Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-VIII EXAMINATION – WINTER 2015

Subj	ject (Date:04/12/2015	
Subj	ect l	Name: Space Dynamics	
Tim	e: 2:	Total Marks: 70	
Instru			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		right of the right indicate run mariny	
Q.1	(a)	State and Prove Kepler's Laws.	07
Q.1	(b)	Explain concept of Escape Velocity in detail.	07
	(,-)		
Q.2	(a)	Explain Newton's Law of Gravitation in detail.	07
	(b)	(i) Determine the mass of the space dynamics	03
		student if the force of attraction between earth	
		and the student is 800 N.	
		(ii) The period of revolution of the earth about the	04
		sun is 365.256 days. The semi major axis of earth's orbit is 1.49527×10^{11} m. In turn, the	
		semi major axis of the orbit of Mars is	
		2.2783×10^{11} m. Calculate the period of Mars.	
		•	
	(b)	OR Explain the Concept of Entry Corridor.	07
	(6)	Explain the Concept of Entry Corridor.	07
Q.3	(a)	Write a short note on the two body problem.	07
	(b)	A satellite is launched from a circular equatorial parking	07
		orbit at an altitude of 180 km into a coplanar circular	
		synchronous orbit by using a Hohmann transfer ellipse.	
		Assume a homogeneous spherical earth with a radius of	
		6370 km. Determine the velocity increments for entering	
		the transfer ellipse and for achieving the synchronous orbit at 45,000 km altitude.	
		OR	
Q.3	(a)	Explain mechanics of Circular orbit. Also list important	07
	()	points for the same.	
	(b)	With neat sketch explain an elliptic orbit.	07
Q.4	(a)	Derive Orbit equation.	07
=	(b)	Write a short note on Hohmann transfer ellipse.	07
		OR	
Q.4	(a)	(i) Classify Space Vehicles.	04
		(ii) Explain Gravitational Potential Energy.	03

Q.4	(b)	(i) Find velocities required to obtain a circular orbit and parabolic trajectory for earth.	04
		(ii) With neat sketches explain primary phases of space mission.	03
Q.5	(a)	Explain different types of entry paths.	07
	(b)	Explain the concept of Deep Space.	07
		OR	
Q.5	(a)	Explain Entry heating. Also obtain an equation for aerodynamic heating rate.	07
	(b)	Derive general equation of motion for a vehicle entering the atmosphere.	07

Given Data:

Radius of earth = 6370 km $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$

Mass of earth = 5.98×10^{24} kg Mass of Sun = 1.99×10^{31} kg

Radius of earth = 696500 km
