Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VIII EXAMINATION - WINTER 2015

Subject Code:180501			Date:09/11/2015	
•	e: 2:	Name: Chemical Reaction Engineering-II 30pm to 5:00pm Total Marks: s:	70	
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	What are Stimulus response (SR) techniques? List various possible SR techniques used to study the flow in vessels.	07	
	(b)	Discuss in detail deviations from ideal flow pattern with examples.	07	
Q.2	(a) (b)	Discuss and derive dispersion model for non-ideal flow. A closed vessel has flow for which dispersion number is 0.3, we wish to represent this vessel by tanks in series model. What value of number of tanks should be selected?	07 07	
	a >	OR		
	(b)	Explain in detail with diagram different ways of approaching plug flow	07	
Q.3	(a)	For a chemical reaction control fluid particle reaction, derive relation for time required for conversion for unreacted core model for spherical particles of unchanging size. Also find time required for complete conversion.	07	
	(b)	Calculate the time needed to burn to completion the particles of graphite (diameter of particle=12 mm, ρ_B = 2.2 gm/cm ³ , k_s = 25 cm/sec) in an 10% oxygen stream. For the higher gas velocity used assume that film diffusion does not offer any resistance to transfer and reaction. The reaction temperature is 900°C.	07	
		OR		
Q.3	(a) (b)	Discuss in detail different models for fluid particle reactions. Discuss about determination of rate controlling step for fluid particle reaction	07 07	
Q.4	(a)	Discuss various kinetic regime of mass transfer and reaction for fluid-fluid reactions	07	
	(b)	Derive rate equation for instantaneous fluid- fluid reaction OR	07	
Q.4	(a)	Write in brief about towers for slow reaction for reaction of the type A (gas) + bB (liquid) → product	07	
0.5	(b)	Discuss slurry reaction kinetics	07	
Q.5	(a) (b)	Write briefly about Prediction from active site theory Write a brief note on "Experimental reactors for solid catalyzed reactions OR	07 07	
Q.5	(a)	Discuss about Physical adsorption and chemisorption	07	
	(b)	Write short note on "Catalyst: Promoters, Inhibitors and poisons."	07	
