GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-I & II (NEW) EXAMINATION – WINTER 2015

•	t Code: 2110015 Date:21/1 t Name: Vector Calculus and Linear Algebra	Date:21/12/2015	
Time: 10:30am to 01:30pm Total Marks:		rks: 70	
1. 2.		ns.	
Q.1 (a	Objective Question (MCQ)	Mark 07	
1			
2	(a)1 (b)2 (c)3 (d)4		
3	(a) \vec{F} (b) 1 (c) 0 (d) -1		
4	(a) A^* (b) \overline{A} (c) A^T (d) $-A^*$		
	(a) 1,-1 (b) 0,2 (c) 1,1 (d) 0,8		
6	Which set from $S_1 = \{a_0 + a_1x + a_2x^2 / a_0 = 0\}$ and $S_2 = \{a_0 + a_1x + a_2x^2 / a_0 \neq 0\}$ subspace of P_2 ?	is	
	(a) s_2 (b) s_1 (c) $s_1 \& s_2$ (d) none of these		
7	 For which value of k vectors u= (2, 1, 3) and v= (1, 7, k) are orthogonal? (a) -3 (b) -1 (c) 0 (d) 2 		
(b 1 2 3 4 5 6 7	 Let T: R³ → R³ be one to one linear transformation then the dimensiver(T) is (a)0 (b) 1 (c) 2 (d)3 The column vector of an orthogonal matrix are (a) orthogonal (b) orthonormal (c) dependent (d) none of these If r = xi+yj+zk then div (r) is (a) r (b) 0 (c) 1 (d) 3 The number of solution of the system of equation AX=0 (where A is a simmatrix) is (a) 0 (b) 1 (c) 2 (d) infinite If the value of line integral does not depend on path C then F is (a) solenoidal (b) incompressible (c) irrotational (d) none of these A Cayley-Hamilton theorem hold for matrices only (a) singular (b) all square (c) null (d) a few rectangular 		
	(a) 1 (b) 0 (c) 2 (d) 4		

- **Q.2** (a) Determine whether the vector field $\mathbf{u} = y^2 \hat{i} + 2xy\hat{j} z^2\hat{k}$ is solenoidal at a point (1,2,1).
 - (**b**) Prove that the matrix $A = \begin{bmatrix} -1 & 2+i & 5-3i \\ 2-i & 7 & 5i \\ 5+3i & -5i & 2 \end{bmatrix}$ is a Hermition and *i*A is a

skew Hermition matrix.

- (c) For which value of λ and k the following system have (i) no solution x + y + z = 6(ii) unique solution (iii) an infinite no. of solution. x + 2y + 3z = 10 $x + 2y + \lambda z = k$
- Q.3 (a) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ (b) Find the inverse of matrix $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ by Gauss-Jordan method
 - (c) Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (-2, 1), v_2 = (1, 3)$ and let **07 T**: $R^2 \rightarrow R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0), T(v_2) = (0, -3, 5)$. Find a formula for $T(x_1, x_2)$ and use the formula to find T(2, -3).
- Q.4 (a) Express $p(x) = 7 + 8x + 9x^2$ as linear combination of 03

$$p_1 = 2 + x + 4x^2$$
, $p_2 = 1 - x + 3x^2$, $p_3 = 2 + x + 5x^2$.

- (b) Solve the system by Gaussian elimination method x + y + z = 6 x + 2y + 3z = 14 2x + 4y + 7z = 30 04
- (c) Let \mathbb{R}^3 have standard Euclidean inner product. Transform the basis $S = \{v_1, v_2, v_3\}$ into an orthonormal basis using Gram-Schmidt Process where $v_1 = (1,1,1)$, $v_2 = (-1,1,0), v_3 = (1,2,1)$.

Q.5
(a) Find the nullity of the matrix
$$\begin{bmatrix} 2 & 0 & -1 \\ 4 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$
 03

(b) Find the least square solution of the linear system Ax = b and find the orthogonal projection of b onto the column space of A where $A = \begin{bmatrix} 2-2\\1\\1\\3\\1 \end{bmatrix} b = \begin{bmatrix} 2\\-1\\1\\1 \end{bmatrix}$

04

(c) Show that
$$S = \left\{ \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 2 \end{bmatrix} \right\}$$
 is a basis for M_{22} .

Q.6 (a) Verify Pythagorean theorem for the vectors
$$u = (3,0,1,0,4,-1)$$
 and $v = (-2,5,0,2,-3,-18)$ 03

- (b) Find the unit vector normal to surface $x^2y + 2xz = 4$ at the point (2,-2,3). 04
- (c) Verify Green's theorem for $\vec{F} = x^2 \hat{i} + xy \hat{j}$ under the square bounded by x=0, x=1, y=0, y=1. 07
- **Q.7** (a) Find $curl\vec{F}$ at the point (2, 0, 3), if $\vec{F} = ze^{2xy}\hat{i} + 2xy\cos y\hat{j} + (x+2y)\hat{k}$ 03
 - (b) Show that the set $V=R^3$ with the standard vector addition and scalar 04 multiplication defined as $c(u_1, u_2, u_3)=(0, 0, cu_3)$ is not vector space.

(c) Use divergence theorem to evaluate
$$\iint_{s} (x^{3} dy dz + x^{2} y dz dx + x^{2} z dx dz)$$
where S is the closed surface consisting of the cylinder $x^{2} + y^{2} = a^{2}$ and the circular discs z=0and z=b. 07

07