GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (New) EXAMINATION – WINTER 2015

Subject Code:2130002Date:31/12/2015Subject Name: Advanced Engineering MathematicsTotal Marks: 70Time: 2:30pm to 5:30pmTotal Marks: 70Instructions:Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1

1

Answer the following one mark each questions: Find $\Gamma\left(\frac{13}{2}\right)$

- 2 State relationship between beta and gamma functions.
- 3 Represent graphically the given saw-tooth function f(x) = 2x, $0 \le x < 2$ and f(x + 2) = f(x) for all x.
- 4 For a periodic function f with fundamental period p, state the formula to find Laplace transform of f.
- 5 Find $L(e^{-3t}f(t))$, if $L(f(t)) = \frac{s}{(s-3)^2}$.
- 6 Find $L[(2t-1)^2]$.
- 7 Find the extension of the function f(x) = x + 1, define over (0,1] to $[-1, 1] \{0\}$ which is an odd function.
- 8 Is the function $f(x) = \begin{cases} x, & 0 \le x \le 2\\ x^2, & 2 < x \le 4 \end{cases}$; continuous on [0,4]? Give reason.

9 Is the differential equation $\frac{dy}{dx} = \frac{y}{x}$ exact? Give reason.

- 10 Give the differential equation of the orthogonal trajectory to the equation $y = cx^2$.
- 11 If $y = c_1y_1 + c_2y_2 = e^x(c_1\cos x + c_2\sin x)$ is a complementary function of a second order differential equation, find the Wronskian $W(y_1, y_2)$.

12 Solve
$$(D^2 + D + 1)y = 0$$
; where $D = \frac{d}{dt}$.

13 Is
$$u(t, x) = 50e^{(t-x)/2}$$
, a solution to $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + u$?

14 Give an example of a first order partial differential equation of Clairaut's form.

Q.2 (a) Solve:
$$\frac{dy}{dx} = \frac{x^2 - x - y^2}{2xy}$$
. 03

14

1

(b) Solve:
$$\frac{dy}{dx} + \frac{1}{x}y = x^3y^3$$
. **04**

(c) Find the series solution of
$$(x - 2)\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + 9y = 0$$
 about $x_0 = 0$. **07**
OR

(c) Explain regular-singular point of a second order differential equation and 07 find the roots of the indicial equation to
$$x^2y'' + xy' - (2 - x)y = 0$$
.

Q.3 (a) Find the complete solution of
$$\frac{d^3y}{dx^3} + 8y = \cosh(2x)$$
.

(b) Find solution of
$$\frac{d^2y}{dx^2} + 9y = \tan 3x$$
, using the method of variation of parameters. 04

(c) Using separable variable technique find the acceptable general solution to 07 the one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ and find the solution satisfying the conditions $u(0, t) = u(\pi, t) = 0$ for t > 0 and $u(x, 0) = \pi - x$, $0 < x < \pi$.

OR

		UK UK	
Q.3	(a)	Solve completely, the differential equation	03
		$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos(2x)\sin x.$	
	(b)	Solve completely the differential equation	04
		$x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 6y = x^{-3} \log x.$	
	(c)	(i) Form the partial differential equation for the equation $(x - a)(y - b) - z^2 = x^2 + y^2$.	07
		(ii) Find the general solution to the partial differential equation xp +	
Q.4	(a)	yq = x - y. Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}$, $x \ge 0$.	03
•	(b)	For the function $f(x) = \cos 2x$, find its Fourier sine series over $[0, \pi]$.	04
	(c)	For the function $f(x) = \begin{cases} x; & 0 \le x \le 2\\ 4-x; & 2 \le x \le 4 \end{cases}$, find its Fourier series.	07
		Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{16}$.	
Q.4	(a)	Find the Fourier cosine series of $f(x) = e^{-x}$, where $0 \le x \le \pi$.	03
C	(b)	Show that $\int_0^\infty \frac{\lambda^3 \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x, x > 0.$	04
	(c)	Is the function $f(x) = x + x , -\pi \le x \le \pi$ even or odd? Find its Fourier series over the interval mentioned.	07
Q.5	(a)	Find $L\left\{\int_{0}^{t} e^{u}(u+\sin u)du\right\}$.	03
	(b)	Find $L^{-1}\left\{\frac{1}{s(s^2-3s+3)}\right\}$.	04
	(c)	Solve the initial value problem: $y'' - 2y' = e^t \sin t$, $y(0) = y'(0) = 0$,	07
		using Laplace transform.	
OR			
Q.5	(a)		03
	(b)	Find $L^{-1}\left\{\frac{e^{-2s}}{(s^2+2)(s^2-3)}\right\}$.	04

(c) State the convolution theorem and verify it for f(t) = t and $g(t) = e^{2t}$. 07

03