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Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
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Q2 (a)

Answer the following one mark each questions:
Find T (2)
2

State relationship between beta and gamma functions.

Represent graphically the given saw-tooth function f(x) =2x, 0<
x<2and f(x +2) = f(x) forall x.

For a periodic function f with fundamental period p, state the formula to
find Laplace transform of f.

Find L(e 3 (1)), if L(f(t)) = (5_53)2.
Find L[(2t — 1)2].

Find the extension of the function f(x) = x + 1, define over (0,1] to
[—1,1] — {0} which is an odd function.
X, 0<x<2

Is the function f(x) = {xz 9 < x <4 continuous on [0,4]? Give

reason.

. . . d .
Is the differential equation d—z = %exact? Give reason.

Give the differential equation of the orthogonal trajectory to the equation
y = cx?.

If y=cy, +cy,=e*(cicosx+c,sinx) is a complementary
function of a second order differential equation, find the Wronskian
Wy, y2).

Solve (D? + D + 1)y = 0; where D = 4

dt
ou

Is u(t, x) = 50et=%)/2 3 solution to Z—’: =—+u?

Give an example of a first order partial differential equation of Clairaut’s
form.

d x%—x—y?
Solve: 2 =222
dx 2xy
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LAy 1 3.3
Solve: Tty =x7y”.

Find the series solution of (x — 2) Z x? dy s 9y = 0 about x, = 0.

OR
Explain regular-singular point of a second order differential equation and
find the roots of the indicial equation to x2y"" + xy’ — (2 — x)y = 0.

3
Find the complete solution of % + 8y = cosh(2x).

2
Find solution of % + 9y = tan 3x, using the method of variation of
parameters.

Using separable variable technique find the acceptable general solution to
the one-dimensional heat equation 2—1: =2 2 p and find the solution

satisfying the conditions u(0,t) = u(m,t) = 0 for t > 0 and u(x,0) =
T—x, 0<x<m.

OR
Solve completely, the differential equation

- 63—3; + 9y = cos(2x) sin x.

Solve completely the differential equation
2 4%y
- dxz - - - - -

(i) Form the partial differential equation for the equation (x — a)(y —

b) — z2 = x? + y2.

(if) Find the general solution to the partial differential equation xp +
yqa=x-—y.

Find the Fourier cosine integral of f(x) = ge"‘, x=>0.

For the function f(x) = cos 2x, find its Fourier sine series over [0, 7z].

For the function f(x) = {x_ X 0<x<2 find its Fourier series.

2<x<4’
T[

" 16
OR

Find the Fourier cosine series of f(x) = e™, where 0 < x < .
Show that foo/1 SInAY 41 = —e X cosx, x > 0.

Is the function f(x) =x+ |x| -t < x < m even or odd? Find its Fourier
series over the interval mentioned.
Find L {fot e*(u + sin u)du}.

. -1 1
Find L {s(sz—3s+3)}'
Solve the initial value problem: y" — 2y’ = efsint, y(0) = y'(0) = 0,
using Laplace transform.

a _
—6x£+6y=x 3log x.

Henceshowthat + + +

OR
Find L{t(sint — tcost )}.
i 1 e~2s
Find L {(52+2)(52—3)}'
State the convolution theorem and verify it for f(t) = t and g(t) = e?*
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