Seat No.:	Enrolment No.

Subject Code:2130306

Instructions:

Time: 2:30pm to 5:00pm

Subject Name: Fundamentals of Digital Design

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (New) EXAMINATION – WINTER 2015

Date:29/12/2015

Total Marks: 70

		tempt all questions.	
		ake suitable assumptions wherever necessary.	
3). FIŞ	gures to the right indicate full marks.	
			MARKS
Q.1		Short Questions	14
Q.1	1	What do you mean by digital signal?	14
	2	$(241.75)_{10} = (\phantom{00000000000000000000000000000000000$	
	3	$(47.25)_8 = (\phantom{00000000000000000000000000000000000$	
	4	$(1101101.1100111)_2 = (\underline{})_{16}$	
	5	Define Fan-out.	
	6	Give the difference between combinational & sequential circuit.	
	7	Give the classification of logic devices.	
	8	Explain Noise margin in digital circuit.	
	9	Draw symbol & truth table for RS-flip-flop.	
	10	What do you mean by resolution in terms of D/A converter?	
	11	Prove universality of NAND gate.	
	12	Define propagation delay in digital circuit.	
	13	What is HDL & VHDL?	
	14	Define FPGA & CPLD.	
Q.2	(a)	Perform $(-9) - (-5)$ using 2's complement method.	03
_	(b)	State & explain De Morgan's theorems.	04
	(c)	Implement the function $F = W(X + YZ) + X\overline{Y}$ using NOR gates.	07
		OR	
	(c)	Implement the function $F = (A + \overline{B})(CD + E)$ using NAND	07
		gates.	
0.0			0.2
Q.3	(a)	Design full subtractor circuit using half subtractor.	03
	(b)	Simplify the function $Y = \sum m(1,2,7,12,13) + d(0,5,15)$ using K-map & draw logic diagram.	04
	(c)	Design 4-bit binary to gray code converter.	07
	(C)	OR	07
Q.3	(a)	Explain full adder with truth table & logic diagram.	03
V. 0	(b)	Reduce the function $F(w,x,y,z) = \sum m(1,5,6,12,13,14) + d(2,4)$ using	04
	(2)	tabulation method.	•
	(c)	Design a combinational circuit whose input is 3-bit binary number	07
	` /	& output binary number is square of input.	
Q.4	(a)	Explain types of ROMs.	03
	(b)	With logic diagram & truth table explain 3 to 8 line decoder.	04
	(c)	A combinational circuit is defined by the function	07
		$F_1(A, B, C) = \sum m(3, 5, 6, 7) \& F_2(A, B, C) = \sum m(0, 2, 4, 7).$	
		Implement this circuit with a PLA having 3 inputs, 4 product terms and 2 outputs.	
		outputs.	

Q.4	(a)	Define PLA with block diagram.	03
	(b)	Explain operation of 8:1 multiplexer with logic diagram & truth table.	04
	(c)	Explain PAL in detail with necessary diagram & compare it with PROM.	07
Q.5	(a)	Explain working of JK- flip-flop with diagram.	03
	(b)	Explain R-2R ladder type DAC.	04
	(c)	Explain Moore & Mealy model for sequential circuit.	07
		OR	
Q.5	(a)	What is race-around condition in JK flip-flop? How can we avoid it?	03
	(b)	Explain successive approximation type ADC.	04
	(c)	For clocked JK- flip-flop write the state table, draw the state diagram and write the state equation.	07
