GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (New) EXAMINATION – WINTER 2015

Subject Code:2131404 Date:29 Subject Name: Food Engineering Thermodynamics			/12/2015	
Tin	ne: 2 ructio 1. 2.	:30pm to 5:00pm Total Marks ns: Attempt all questions.	: 70	
		Use of Steam Tables and Psychrometric Chart is permitted		
Q.1	1 2	Define isolated system with an example. Explain gauge pressure. If $P_g = 1$ bar, calculate P_{abs} .	01 01	
	2 3 4	Give SI unit of specific gas constant and write its dimensions. How much volume would 1 mole of CH_4 molecules take up if they were	01	
	5	stacked on each other? Take $b = 0.04278$ liter/mole.	01	
	5	If 2.5 g of XeF ₄ is placed in into an evacuated container of 3 liter volume at 80 °C, calculate the pressure in the container in Pa. Take M for as 207.3.	01	
	6 7	State the law of corresponding states. What is compressibility factor? State Zero th law of thermodynamics and state its importance.	01 01	
	8	Name different types of thermometers and state their working principle.	01	
	9	What is triple point of water? State its significance.	01	
	10 11	Define normal boiling point. Make a block diagram representing Carnot refrigerator.	01 01	
	11	State Gibb's phase rule with an example.	01	
	13	What is superheated steam?	01	
	14	Define adiabatic saturation temperature.	01	
Q.2	(a)	Define ideal gases and explain under what conditions gases deviate from ideal behavior. A vessel of 250 litre volume contains nitrogen gas at 2 bar pressure and 27 °C. Calculate the mass of nitrogen in kg assuming ideal gas behaviour. [Take $R = 8.314$ J/mol K]	03	
	(b)	What are real gases? Write down Van <i>der</i> Waal's equation of state for real gases. What do the constants 'a' and 'b' in the equation stand for? Five hundred moles of N ₂ gas is stored in a 75 liter closed container at -28 °C. Calculate the pressure of the gas in kPa using Van <i>der</i> Waal's gas equation. Take a = 0.137 Pa (m ³ /mole) ² , b = 3.86 x 10 ⁻⁵ m ³ /mole, R = 8.314 J/mole K	04	
	(c)	Define Specific heat and enthalpy. Express each one in terms of state functions u, v t, and p. Prove that $C_p - C_v = \overline{R}$ for ideal gases. Ten	07	
		 kilogram of CO₂ gas is heated reversibly and isobarically from an initial state of [T = 3250 K, P= 2 bar] until its volume doubles. Calculate (i) The expanded work in kJ (ii) Change in internal energy and enthalpy in kJ. 		
		[Take Cp = 40 J/mol K, $R = 8.314$ J/mol k]		

OR

(c) Define C_p and C_v and prove that $C_p - C_v = 0$ for liquids and solids. An ideal **07** gas is compressed from initial volume of 0.5 m³ to a final volume of 0.25 m³ at a constant pressure of 2 bar. During this process 150 kJ heat was removed from the system. Calculate the work done and the accompanying change in

1

internal energy in kJ specifying proper sign convention.

- Q.3 (a) Define control volume. Write down SFEE for a stream of fluid entering and leaving a control volume. Specify each term in the equation and mention their SI units.
 - (b) Steam is being injected into a cylinder through a horizontal nozzle in steady 04 state. The inlet and outlet conditions (1 & 2) are:

 $h_1 = 3600 \text{ kJ/kg}, V_1 = 90 \text{ m/s}, A_1 = 0.12 \text{ m}^2, v_1 = 0.2 \text{ m}^3/\text{kg}$

 $h_2 = 3260 \text{ kJ/kg}, v_2 = 0.52 \text{ m}^3/\text{kg}.$

Calculate (i) Exit velocity

- (ii) Mass flow rate of steam
- (iii) Area of the nozzle at the exit end.
- (c) Explain first law of thermodynamics for a closed system undergoing a state 07 change process. Prove that PV^{γ} = Constant for an ideal gas is undergoing a reversible adiabatic process. Ten kilogram of an ideal gas at 237 °C and 20 bar pressure expands isentropically until its volume increases to five times. Calculate the work done during the process in kJ. [Take C_p = 1.025 kJ/kgK, C_v = 0.714 kJ/kgK]

OR

- Q.3 (a) Define flow work. What is diffuser? Write down SFEE for steam jet entering and leaving a diffuser in terms of work and energy transfer per unit time and state the assumptions made while doing so.
 - (b) A steam turbine developing 500 kW receives a flow of 24 tonne/h of steam @ 04 105 m/s. The exit velocity of steam is 324 m/s. The inlet pipe is located 2 m above the exhaust pipe. Using Steady Flow Energy Equation, calculate the change in enthalpy in kJ/kg.
 - (c) Explain first law of thermodynamics for a cyclic process. A gas at 500 kPa, 227 °C occupying 0.25 m3 volume is cooled isobarically to 67 °C. Calculate the following:
 - (a) Heat transferred in kJ.
 - (b) Work done and its direction.
 - (c) Change in internal energy.

Mention the direction of each of the above changes.

- Q.4 (a) Assume that two Carnot engines are working in series between temperatures 03 600K and 400K. Both the engines are coupled in a manner to develop same power. Calculate the intermediate temperature at which the first one rejects heat.
 - (b) What is a heat engine? State its salient characteristics. Briefly describe the working of a thermal power plant with the help of a schematic diagram and write energy balance equations. How do you measure its index of performance?
 - (c) State and explain Kelvin-Plank and Clausius statements of second law of thermodynamics. Explain their equivalence by justifying your answer with mathematical justification.

OR

- Q.4 (a) Explain the concept of entropy. A refrigerator is operating between 2 °C and 40 °C providing a COP of 70% of the maximum possible COP. If it is removing 3.5167 kW of heat from the refrigerated space, calculate the power requirement and the heat it rejects to the sink.
 - (b) Explain Clausius inequality. Show that for any thermodynamic process 04

$$(1\rightarrow 2), \ \left(\Delta s\right)_{1-2} \geq \int_{1}^{2} \left(\frac{dQ}{T}\right).$$

 $\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$ (ii) (b) Explain the following briefly: 04 (i) Critical point (ii) Dryness fraction of steam Using steam tables find out the values of saturation temperature, specific volume of steam having 80% quality at 2 bar pressure (c) Explain the following: 07 (i) Sensible heating (ii) Dew point temperature (iii)Cooling and dehumidification (iv)Specific humidity For a certain location the following data are available for the atmospheric air: Temperature = $35 \text{ }^{\circ}\text{C}$ Barometric Pressure = 760 mm Hg and Relative humidity = 50%. Using Psychrometric Chart determine: Dew point temperature in °C (i) (ii) Wet bulb temperature in °C Mass of moist air in kg/kg d.a (iii) OR **Q.5** (a) Establish the following for a pure substance undergoing an infinitesimal 03 reversible process: dH = TdS + VdP(i) (ii) $\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$ (b) Explain the following briefly: 04 (i) Saturated steam (ii) Quality of steam Using steam tables find out the values of saturation pressure, specific volume of steam having 75% quality at 140 °C. (c) Explain the following: 07 (i) Wet bulb temperature (ii) Relative humidity (iii)Heating and dehumidification (iv) Sensible cooling For a certain location the following data are available for the atmospheric air: Barometric Pressure = 760 mm HgRelative humidity = 60%. $DPT = 20 \,^{\circ}C$ Using Psychrometric Chart determine: (i) DBT in °C (ii) Wet bulb temperature in °C Specific humidity of moist air in kg/kg d.a (iii) ***** 3

(c) State and explain Carnot theorems. What do you understand by PMM1 And

(a) Establish the following for a pure substance undergoing an infinitesimal

explain the significance of this cycle.

reversible process:

(i)

dU = TdS - PdV

Q.5

PMM2? Explain Carnot cycle showing various state points and processes and

07

03