GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (New) EXAMINATION – WINTER 2015

Subject Code:2132502Date :02/01/2016Subject Name: Engineering Thermodynamics & Heat TransferTime: 2:30pm to 5:00pmTotal Marks: 70Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.3. Figures to the right indicate full marks.				
0.1		Define the following terms		
Q.1	1	Define the following terms.	14	
	1 2	Black body Quasi-static process		
	2 3	Availability		
	3 4	Perfect gas		
	5	Reversible Process		
	6	Enthalpy		
	7	Entropy		
	8	Point function		
	9	Extensive property		
	10	Pure substance		
	11	Macroscopic approach		
	12	System		
	13	Emissivity		
	14	Conduction		
Q.2	(a)	In an IC engine, during the compression stroke the heat rejected to the cooling water is 50 kJ/kg and the work input is 100 kJ/kg. Calculate the change in internal energy of working fluid stating whether it is a gain or loss.	03	
	(b) (c)	What are different types of Thermodynamic Systems? Explain with suitable example. What is irreversibility? State various types of irreversibility and explain	04 07	
	(C)	them.	07	
		OR		
	(c)	Establish the inequality of Clausius.	07	
Q.3	(a)	Find the COP and heat transfer rate in the condenser of a refrigerator in kJ/h which has a refrigeration capacity of 12000 kJ/h when power input is 0.75 kW	03	
	(b)	What do you mean by PMM1 and PMM2?	04	
	(c)	Explain the concept of decrease in available energy when heat is transferred through a finite temperature difference with the aid of T-S diagram.	07	
		OR		
Q.3	(a)	Explain the concept of Energy, Exergy and dead state of system.	03	
×	(a) (b)	Explain the process of steam formation using h -s chart.	03	
	(c)	State the Steady Flow Energy Equation and explain how this equation can	07	
		be applied for (i) Nozzle, (ii) Boiler, and (iii) Steam Turbine.	07	
Q.4	(a)	What is the difference between critical point and triple point?	03	
-	(b)	What is the difference between fin efficiency and fin effectiveness ?	04	
	(c)	Derive the general heat conduction equation for Cartesian coordinate	07	

1

		system.
		OR
Q.4	(a)	Explain zeroth law of thermodynamics.
	(b)	Explain the mechanism of convection heat transfer. Also explain natural and forced convection.
	(c)	By dimensional analysis show that for forced convection $Nu = f(Re, Pr)$,
		where Nusselt No $(Nu) = \frac{hl}{K}$, Reynolds No $(Re) = \frac{\rho Vl}{\mu}$, Prandtl No
		$(Pr) = \frac{\mu C_p}{K}$
Q.5	(a)	State silent features of shape factor.
Q>	(b)	Assuming the sun to be a black body emitting radiation with maximum
	(0)	intensity at $\lambda = 0.49 \ \mu m$, calculate the following:
		(i) The surface temperature of the sun, and
		(ii) The heat flux at the surface of the sun.
	(c)	Explain term Boiling also explain various regimes of boiling.
		OR
Q.5	(a)	Explain Wein's displacement law of Radiation.
-	(b)	In a counter-flow double pipe heat exchanger, water is heated from 25 °C
		to 65 °C by an oil with a specific heat of 1.45 kJ/kg K and mass flow rate
		of 0.9 kg/s. The oil is cooled from 230 °C to 160 °C. If the overall heat
		transfer coefficient is 420 $W/m^2 \circ C$, calculate the following:
		(i) The rate of heat transfer
		(ii) LMTD of heat exchanger.
	()	D_{1} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

(c) Derive the equation for logarithmic mean temperature difference (LMTD) 07 for parallel flow heat exchanger.
