Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–IV (New) EXAMINATION – WINTER 2015

0						Date:19/12/2015	ate:19/12/2015	
	Subject Name: Mathematics - IV Time: 2:30pm to 5:30pm Instructions:			v	Total Marks: 70			
		1. 2.	Attempt all o Make suitab	_	vherever necessa full marks.	ry.		
Q.1	(a)			-	Imz^3 and (Imz)			03 04
	(b)	(ii) Find and graph all roots of $\sqrt[4]{-1}$ in the complex plane. (i) Represent $z = \frac{1+i}{1-i}$ in polar form.						
	(i) Is the function $u = x^3 - 3xy^2$ harmonic? If your ans corresponding analytic function.				nswer is yes, find a	04		
Q.2	(a)	(i) Evaluate $\oint_C \frac{dz}{z^2+1}$, where C is the circle $ z-i = 3/2$.						03
		(ii) Using Cauchy's integral formula integrate $\oint_C \frac{e^z}{z-2i} dz$, where C is circle $ z-2i = 4$.						04
	(b)		(i) Find the	Laurent series of	of $z^2 e^{1/z}$ with co			03 04
		(ii) Determine and sketch the image of $ z = 1$ under the transformation $w = z + i$.						
					OR			
	(b)	(i) Find the Taylor's series of $f(z) = \frac{1}{1+z^2}$ at $z_0 = 0$.						03
		(ii) Evaluate $\oint_C \frac{4-3z}{z^2-z} dz$, where $C: z = 2$.						04
Q.3	(a)		(i) Evaluate	$\oint_C \frac{e^{2z}}{z-2} dz$, where	ere C is a circle	z = 1.		03
			(ii) Using re	sidue theorem e	evaluate $\oint_C \frac{z^2 \sin z}{4z^2 - z}$	$\frac{z}{1}dz$, where C: z	z = 2.	04
	(b)		(i) Evaluate		0 42 -	L		03
		(ii) Find the bilinear transformation which maps the points $z_1 = -1$, $z_2 =$						
		$0, z_3 = 1 \text{ onto } w_1 = 0, w_2 = 1, w_3 = -1.$ OR						
Q.3	(a)	-						03
					evaluate $\oint_C \frac{30z^2}{(2z-1)}$		2	04
	(b)				- (== -	(02 1)		03
		(i) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region $ z < 1$. (ii) Determine the bilinear transformation that maps the points $z_1 = 0$, $z_2 = 0$						
		$1, z_3 = \infty$ onto $w_1 = -1, w_2 = -i, w_3 = 1$.						
Q.4	(a)	Ev	valuate $\int_0^6 \frac{1}{1+x}$	dx taking $h = 2$	1 by using Simps	son's 1/3 rule.		04
	(b)	Determine the interpolation polynomial of degree three using Langrange's 05					05	
		int	$\frac{x}{x}$	the following c -1	lata.	1	3	
		f(x) 2 1 0 -1						

Apply Newton's divided difference formula compute f(0.8) from the data (c)

ripping new con b and	laca annerenee lonn) mom me aaaa	
x	0.5	1.0	2.0	
f(x)	0.479	0.841	0.909	
OR				

(a) Solve the following linear system of equations by Gauss elimination method. 0.4 $x_1 + x_2 + x_3 = 9$; $2x_1 - 3x_2 + 4x_3 = 13$; $3x_1 + 4x_2 + 5x_3 = 40$

- Apply Newton-Raphson method to find the solution of $f(x) = x^3 5x + 3$ correct 05 **(b)** up to four decimal places.
- (c) Using Euler's method find y(0.1) and y(0.2) given $\frac{dy}{dx} = y \frac{2x}{y}$; y(0) = 1, 05 (Take h = 0.1)
- 0.5 (a) Find the positive solution of f(x) = x - 2sinx = 0 by the secant method correct up 04 to three decimal places. Start from $x_0 = 2$ and $x_1 = 1.9$.
 - Using Rung-Kutta method of fourth order, find y(0.2) given that $y' = xy + y^2$, **(b)** 05 v(0) = 1.
 - (c) Apply the Gauss-Seidel iteration (3 steps) to the system (start from (0,0,0)). 05 $10x_1 + x_2 + x_3 = 6$; $x_1 + 10x_2 + x_3 = 6$; $x_1 + x_2 + 10x_3 = 6$ OR

(a) Evaluate $\int_0^1 e^{-x^2} dx$ by Trapezoidal rule. (Take h=0.1) 0.5

(b)	Using Newton's interpolation formula compute cosh 0.56 from the data,						
	x	0.5	0.6	0.7	0.8		
	coshx	1.127626	1.185465	1.255169	1.337435		

(c) Using Taylor's series method to determine the value of y(0.03) correct up to four 05 decimal places, if $y' = x^2y - 1$; y(0) = 1.

05

04

04 05