GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) EXAMINATION – WINTER 2015

Subject Code:2140105 Subject Name: NUMERICAL METHODS Time: 2:30pm to 5:00pm

Date:19/12/2015

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Derive the normalized equation for fitting a second degree parabola. Also find 07 the approximate value of a and b in $y=a+bx+cx^2$ using the following experimental values

х	0	1	2				
У	1	6	17				

(b) State the Newtons backward interpolation formula and hence use appropriate 07 formula to find F(10) from the available data

Х	3	4	5	6	7	8	9
F(x)	2.7	6.4	12.5	21.6	34.3	51.2	72.9

- **Q.2** (a) Discuss the lagrange's interpolation formula for four data points. If y(1)=4, 07 y(3)=12, y(4)=19, y(6)=132, find the inverse lagranges interpolation polynomial and hence evaluate x for y=7.
 - (b) (i) Use Newtons divided difference formula to evaluate f(301) from the 07 following table,

X	300	304	305	307
f(x)	2.4771	2.4829	2.4843	2.4871

(ii) Prove $\mu E = E\mu$.

OR

(b) (i) Employee stirlings formula to compute y(1.91) from the table

07

х	1.7	1.8	1.9	2	2.1	2.2
y(x)	5.4739	6.0496	6.6859	7.3891	8.1662	9.0250

(ii) Prove $\mu \delta = \frac{1}{2} (\Delta + \nabla)$.

- Q.3 (a) Find y for x=2 using the data (1,-3), (3,9), (4,30), (6,132) use appropriate 07 method
 - (b) $\frac{\pi}{2}$ 07 Evaluate the integral $\int_{0}^{\frac{\pi}{2}} \sin x dx$ by Simpson 1/3rd rule and Simpsons 3/8th rule with 4 strips and 8 strips.
- Q.3 (a) Apply shooting method to solve $y^{11}(x) = y(x),$ y(0) = 0 and y(1) = 1.1752 07

1

(b) 5x-2y+z=4Solve using Gauss elimination method 7x+y-5z=8.

$$3x + 7y + 4z = 10$$

- **Q.4** (a) Solve using bisection method $f(x) = x^3 x 1 = 0$, correct upto 3 decimal places. 07
 - (b) Implement Newton Raphson method to find the root of **07** $f(x) = x \sin x + \cos x$ with $x_0 = \pi$.

OR

- Q.4 (a) Solve using method of false position $f(x) = xe^x 2 = 0$. correct upto 3 decimal 07 places between 0.8 and 0.9.
 - (b) Solve using secant method correct upto 4 decimal places 07 $\cos x = xe^x$ within (0,1)
- **Q.5** (a) Solve using Runge Kutta 2nd order method $\frac{dy}{dx} = x y^2$ with y(0) = 1. **07** Compute for y(0.2) and y(0.4).
 - (b) Solve $\frac{dy}{dx} = x + y$ with y(0)=1 by modified Euler method for x=0.1 correct upto four decimal places by taking h=0.05.

OR

- **Q.5** (a) State the first and second order finite difference formulae, Apply finite 07 difference method to solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 x^2}$ with boundary conditions u=0 when x=0 and x=1. And u(1,t)=t taking k=1/8 and h=1/2.
 - (b) Solve the two point boundary value problem defined by $y^{11} + x = 0$, 0 < x < 1 07 y(0) = y(1) = 0Using Rayleigh Ritz method.

07