GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER–IV (New) EXAMINATION – WINTER 2015

Subject Code:2140107 Subject Name: Computational Fluid Dynamics I Time: 2:30pm to 5:00pm Instructions:			Date:28/12/2015
			Total Marks: 70
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain FVM for one dimensional steady state diffusion	07
	(b)	problem. Using Polynomial approach derive one sided 2nd order accurate difference quotient at the boundary.	07
Q.2	(a)	What is Descretization? Why it is required? List the basic	07
	(b)	descretization techniques. Derive Continuity equation for any two models of fluid flow.	07
		OR	
	(b)	Derive momentum equation in conservation form.	07
Q.3	(a)	Derive the generic form for CFD for the complete flow	07
	(b)	system. Write a short note on substantial derivative. OR	07
Q.3	(a)	Write a short note on error and stability. And define the stable equation.	07
	(b)	Derive the Prandtl-Mayer function for expansion waves.	07
Q.4	(a)	Write a short note on Maccormark Technique.	07
	(b)	Write a short note on structured grid and unstructured grid. OR	07
Q.4	(a)	Derive 2 nd order derivative terms of Laplace equation in	07
Q.4	(b)	difference terms. Write a short note on Lax-Wendroff technique	07
-		-	
Q.5	(a)	Write a short note on implicit approach and explicit approach.	07
	(b)	Why CFD is required? Explain the applications for the same.	07
07	(\cdot)	OR Evaluin the concert of along transformation with the	07
Q.5	(a)	Explain the concept of plane transformation with the example of Prandtl Mayer expanded flow.	07
	(b)	Explain the difference between FDM, FEM and FVM.	07
