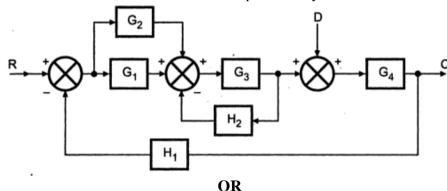
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (New) EXAMINATION - WINTER 2015

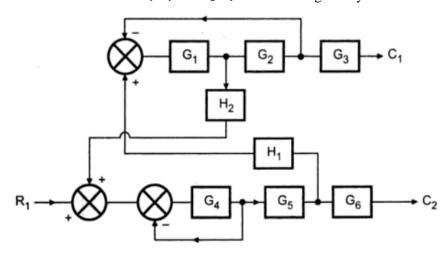
Subject Code:2140307 Date:01/01/2016

Subject Name: Control System & Analysis

Time: 2:30pm to 5:00pm Total Marks: 70

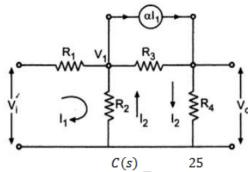

Instructions:

1. Attempt all questions.


- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) A feedback control system is represented by the differential equation, $\frac{d^2c}{dt^2} + 6.4 \frac{dc}{dt} = 160 e, \text{ where, } e = r 0.4 c$

The variable c denotes output. Find the value of the damping ratio and what information does this convey about the transient behavior of the system.

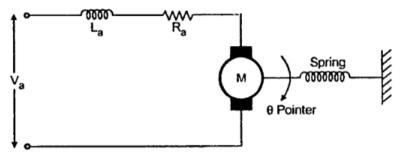
- (b) The open loop transfer function of a unity feedback control system is $G(s) = \frac{100}{s(s+10)}$ and the input applied is $r(t) = a + bt + \frac{ct^2}{2}$. Obtain generalized error series.
- Q.2 (a) Determine the stability of the system given by characteristic equation, $s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15 = 0$
 - **(b)** Determine the ratio C/D, C/R and the total output of the system shown below: **07**



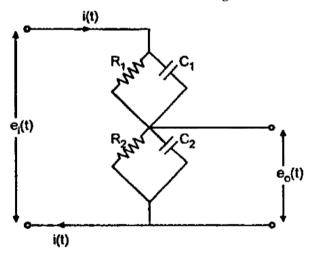
(b) Obtain the transfer functions C_1/R_1 and C_2/R_1 of the below given system.

07

Q.3 (a) Draw signal flow graph for electrical network if the various branch currents are as shown in the figure.



(b) $\frac{C(s)}{S(s)} = \frac{25}{2s}$

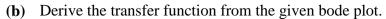

A second order system is given by $R(s) = \frac{1}{s^2 + 6s + 25}$. Find the rise time, peak time, peak overshoot and settling time if subjected to unit step input. Also calculate expression for its output response.

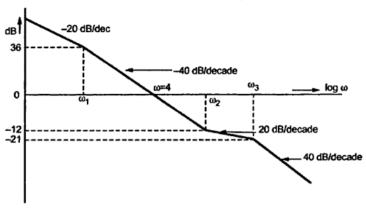
OR

Q.3 (a) A D.C. motor drives a pointer of ECG pen-motor system, which is spring loaded, to return the reference position. If $K_b = \text{back } e.m.f.$ constant, $K_T = \text{Torque constant}$, $K_S = \text{Spring constant}$, and J = Moment of Inertia. Find the transfer function of the system.

(b) Obtain the transfer function of the network shown in figure.

Q.4 (a) Plot the root locus of the system having


$$G(s)H(s) = \frac{\kappa}{s(s+4)(s^2+4s+20)}$$


Also obtain,

1. k for $\xi = 0.707$, (ii) k for $\xi = 0.866$ (iii) k for $\xi = 1$.

07

07

OR

07

07

$$G(s)H(s) = \frac{k(s+5)}{(s^2+4s+20)}$$

07

(b) Obtain magnitude and phase plot of below given system.
$$G(s)H(s) = \frac{4000(s + 0.05)(s + 4)}{s(s + 1)(s + 10)}$$

Also obtain,

- 1. Gain crossover frequency
- 2. Phase crossover frequency
- 3. Gain margin
- 4. Phase margin
- 5. Stability of the system
- (a) What are gain margin & phase margin? Determine these two analytically for a **Q.5**

07

07

07

system with

0.82 rad/sec. Is the system stable? (b) Sketch the Nyquist plot for a system with the open loop transfer function, $G(s)H(s) = \frac{k(1+0.5s)(1+s)}{(s-1)(1+10s)}$

Determine the range of values of k for which the system is stable.

Q.5 (a)

 $G(s)H(s) = \frac{\left(1 + \frac{s}{A}\right)^2}{s^3}$ determine the value of A, that gives the system a phase margin of 50°.

(b) Determine the stability of the system using Nyquist criteria.

07

$$G(s)H(s) = \frac{100(1+5s)}{s^4(1+s)}$$
