Sont	No ·	
Seat	110	_

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) EXAMINATION – WINTER 2015

	Sub	Diject Code:2140505 Date:19/12/2015		
	Sut Tin	ne: 2:30pm to 5:30pm Total Marks: 70		
	mst	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1	(a)	Define following: i) Truncation error ii) Round off error iii) Absolute Error iv) Accuracy v) Error propagation vi) Initial value and boundary value problem vii) Precision	07	
(b) i. Use Descartes' rule of signs to find the number of positive, negative and in roots of the function: $x^6 - x^5 - 10x + 7 = 0$				
		ii. Write an algorithm for False Position method	04	

- Q.2 (a) i.) Discuss bracketing methods & open methods
 - ii.) You are designing a spherical tank (Figure 1) to hold water for a small village in a **04** developing country. The volume of liquid it can hold can be computed as

Where V = volume $[m^3]$, h = depth of water in tank [m], and R = tank radius [m]If R = 3 m, to what depth must the tank be filled so that it holds 30 m³. Use three iterations of bisection method to determine your answer.

[Hint: from the physics of the problem, the depth (h) would be between h = 0 and h = 2R and hence the this becomes the lower and upper limits of depths to initiate the computation]

(b) Use the multiple equation Newton - Raphson method to determine roots of the equations: 07 $u(x, y) = x^2 + xy - 10 = 0$ & $v(x, y) = y + 3xy^2 - 57 = 0$ Initiate the computation with guesses of x = 1.5 & y = 3.5

(b) Derive the formula of Newton - Raphson method & also prove that Newton - Raphson 07 method is quadratically convergent.

03

Q.3 (a) Discuss the pitfalls of Gauss - Elimination method and techniques for improving solutions 07

(b) Define diagonally dominant system. Check whether the following system of equations is 07 diagonally dominant or not? Solve the system by using Gauss - Seidel iterative method (3 iterations).

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

OB

- **Q.3** (a) Derive normal equation to fit a 2^{nd} order polynomial using least square method.
 - (b) In an experiment the following values of heat capacity C at various temperatures T for a 07 gas is obtained.
 Temp (T): -50 -30 0 60 90 110

1 cmp (1).	-30	-30	0	00	70	110
Heat Capacity (C):	1270	1280	1350	1480	1580	1700
Use linear regression	to determine	the model	to predict	heat capacity	(C) as a	a function of

Q.4 (a) The following table gives the values of density (d) of a saturated water for various 07 temperatures (T) of saturated steam

-					
Temp (T) °C :	100	150	200	250	300
Density (d) kg/m ³ :	958	917	586	799	712
Northender de la Commend de	1	f			

Use Newton's forward interpolation formula to find the density when the temperature is 130 °C and 270 °C.

temperature (T)

 $E = 1 + \Delta$ and $E = e^{h\Delta}$

x :

F(x)

ii.) Determine the interpolating polynomial of degree three using Lagrange's **04** interpolation formula for the table below

ii.) Integration provides a means to compute how much mass enters or leaves a reactor 03 over a specified time period as $M = \int_{t_1}^{t_2} Qc \, dt$

Where t_1 and t_2 = the initial and final times respectively.

The integral represents the summation of the product of flow times concentration to give the total mass entering or leaving from time t_1 to t_2 . For a constant flow rate of $Q = 4 \text{ m}^3/\text{min}$, Use Simpson's rule to evaluate this equation for data listed below: t (mins): 0 10 20 30 40 50 60

Volume (V) :	2	4	6	8	10
Pressure (P) :	105	42.7	25.3	16.7	13

Find the rate of change of pressure with respect to volume when V = 2 and V = 8

Q.5 (a) Solve the following initial value problem

$$\frac{dy}{dx} = 4e^{0.8x} - 0.5y; \quad y(0) = 2$$

From x = 0 to 0.5 taking h = 0.5 using 4^{th} order Runge - Kutta method.

32

07

07

07

03

04

(b) Solve $y' = y + x^2$ with y(0) = 1 using Milne's predictor - corrector method & find y(0.8) 07 taking h = 0.2 with values of y(0.2), y(0.4), y(0.6) listed below

Q.5 (a) A steady state heat balance for a rod can be represented as $\frac{d^2T}{dx^2} - 0.15T = 0$ 07 With T(0) = 240 & T(10) = 150, Use the finite difference approach with $\Delta x = 2$ to solve the problem

(b) Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh (Figure - 2) with boundary values as shown. (Use Gauss Seidel method upto three iterations) 07
