GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) EXAMINATION – WINTER 2015

Subject Code:2140706Date:28/12/2015Subject Name: Numerical & Statistical Method for Computer Engineering
Time: 2:30pm to 5:00pmTotal Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) (1) Using method of successive approximation solve the equation 03 $2x \log_{10} x = 7$ correct to four decimal places.
 - (2) Using method of False-position, compute the real root of the equation $04 x \log_{10} x 1.2 = 0$ correct to four decimals.
 - (b) (1) Discuss briefly the different types of errors encountered in performing 03 numerical calculations.
 - (2) Use Newton-Raphson method to find smallest positive root of 04 $f(x) = x^3 - 5x + 1 = 0$ correct to four decimals.
- Q.2 (a) Solve this system of linear equations using Jacobi's method in three iterations 07 first check the co-efficient matrix of the following systems is diagonally dominant or not?

$$20x + y - 2z = 17$$

$$2x - 3y + 20z = 25$$

$$3x + 20y - z = -18$$

- (b) (1) State Budan's theorem and hence show that 03 $p(x) = x^5 - x^4 - 3x^3 + 2x + 5$ has one root in [-2, -1].
 - (2) Apply Budan's theorem to find the no. of roots of the equation $x^5 + x^4 4x^3 3x^2 + 3x + 1$ in the interval [-2, -1], [0,1] & [1,2].

OR

- (b) Perform two iterations of the Bairstow method to extract a quadratic factor from 07 the polynomial $p(x) = x^3 + x^2 x + 2 = 0$.
- Q.3 (a) State the Direct & iterative methods to solve system of linear equations. Using 07 Gauss-Seidel method, solve

$$2x_1 - x_2 = 7$$

-x_1 + 2x_2 - x_3 = 1
-x_2 + 2x_3 = 1

(1) Define ill-conditional linear systems of equations. Determine the **(b)** 03 4 9 condition number of the matrix A =4 9 16 9 16 25

(2) From the following data find the value of x when y = f(x) = 0.390. 04

20	25	
0.342	0.423	
OR		

100

Q.3 (a) Obtain the cubic Spline approximation for the function defined by the data.

20

	x	0	1	2	3
	f(x)	1	2	33	244
т	T C'1	1: 1 C C (O 5	`\		

Hence find an estimate of f(2.5).

х

х

y = f(x)

(1)	Fit a straight l	ine for the data	a.	
	У	12	15	21

50

03

03

07

30

0.500

25

120

04 (2) The following table gives distance (in nautical miles) of the visible horizon for the given heights (in feet) above earth's surface. Find the values of y when x = 390 feet.

70

Height (x)	100	150	200	250	300	350	400
Distance (y)	10.63	13.03	15.04	16.81	18.42	19.90	21.47

0.4 (a)

(b)

(1) Use Euler's method to find an approximation value of y at
$$x = 0.1$$
 for the initial value problem $\frac{dy}{dx} = x - y^2$; $y(0) = 1$.

04 (2) Find the least squares approximations of second degree for the following data

x	-2	-1	0	1	2
y = f(x)	15	1	1	3	19
		1			

(b) Solve the initial value problem
$$\frac{dy}{dx} = -2xy^2$$
; $y(0) = 1$ with $h = 0.2$ for 07

y(0.2) using Runge-Kutta fourth order method.

OR

Q.4 (a) (1) Evaluate $\int \log_{10} x \, dx$ taking 8 subintervals by Trapezoidal rule. 03 (2) Evaluate $\int_{-\infty}^{1} \frac{dx}{1+x}$ using Simpson's $\frac{3}{8}$ rule. 04

State different predictor-corrector method. For the initial value problem **(b)** 07 $\frac{dy}{dx} = y + x^2$; y(0) = 1, use Milne's prediction-corrector method to find y(0.8) by taking h = 0.2 from following data

		0		
x	0	0.2	0.4	0.6
У	1	1.2242	1.5155	1.9063

From the following data calculate moments about (i) Assumed mean 25 07 Q.5 (a) (ii) Actual mean (iii) zero.

Variable	0-10	10 - 20	20-30	30 - 40
Frequency	1	3	4	2

(b) Explain co-relation, co-relation Types, co-relation co-efficient. Also state the 07 methods to find correlation between two variables. Find the correlation co-efficient between the serum diastolic blood pressure & serum cholesterol levels of 10 randomly selected persons.

Persons	1	2	3	4	5	6	7	8	9	10
Cholesterol	307	259	341	317	274	416	267	320	274	336
Diastolic	80	75	90	74	75	110	70	85	88	78
B.P.										

OR

- Q.5 (a) The quantities of water (in liters) supplied by municipal corporation on ten 07 consecutive days in certain area are shown below: 218.2, 199.7, 207.3, 185.4, 213.7, 184.7, 179.5, 194.4, 224.3, 203.5. Evaluate the mean & the first four central moments of the water (in liters) of that area.
 - (b) State the formula for two regression equations. Also give algorithm for the 07 following data find the line of regression of y on x.

x	1.53	1.78	2.60	2.95	3.42
У	33.5	36.3	40.0	45.8	53.5
