GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (New) EXAMINATION - WINTER 2015

Subject Code:2141002 Date:19/12/2015

Subject Name: Analog Circuit Design

Time: 2:30pm to 5:00pm Total Marks: 70

Instructions:

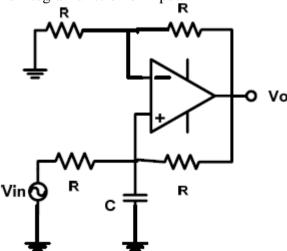
- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Draw the differential amplifier circuit using two op-amp. State advantage of one additional op-amp in that. Show how its output is related to input using necessary derivations.
 - (b) Design the wein bridge using JFET, to produce a sinusoid output of frequency 2KHz. The FET has $g_m = 2.5$ ms and $\mu = 35$.
- Q.2 (a) Explain the working of Hartley oscillator. Derive the expression for frequency of oscillation.
 - (b) Derive the expression for current gain with resistive load using hybrid Π model. 07

OF

(b) The following low frequency parameters are known for a given transistor at Ic=1.3 mA, VCE= 10V at room temperature and the h-parameters are as follows.

 h_{fe} =50, h_{ie} =1100, h_{re} =2.5x10⁻⁴, h_{oe} =24 μ A/V.

At the same point f_T = 50 MHz and C_{ob} =3pF. Compute all the values of hybrid π parameters of CE transistor model.


Q.3 (a) Explain the positive full wave rectifier using op-amp.

07

(b) Draw the hybrid Π common emitter transistor model. Also derive the expression for input conductance.

OR

- Q.3 (a) Explain working of 555 timer based Monostabe multivibrator. Design the same of for the output pulse width of 10 ms.
 - (b) Prove that output is integral function of Input. 07

Q.4 (a) Explain the basic differentiator using an op-amp. What are the problems associated with this configuration? How they are overcome?

	(b)	Explain how op-amp can be used to generate free running square wave with	07
		necessary circuit diagram and waveforms. Show how time period can be	
		calculated.	
		OR	
Q.4	(a)	What is PLL? Explain operation of PLL with basic blocks and mention any four	07
		applications of it in radio communication.	
	(b)	What is need of clipper circuit? Explain op-amp as a positive and negative	07
		clipper along with necessary waveforms.	
Q.5	(a)	Explain the working of a Schimitt trigger using op-amp	07
Q.C	(b)	Analyze second order butterworth high Pass filter. Draw its frequency response	07
	(~)	and state design procedure.	
		OR	
Q.5	(a)	Derive transfer function of Sallen-key low pass filter	07
-	(b)	Sketch Delyiannis-Friend circuit and obtain its transfer function.	07
	` /		
