GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) EXAMINATION – WINTER 2015

Subject Code:2141005 Subject Name: Signals and Systems		Date:04/01/2016
Time: 2:30pm to 5:00pm Instructions:		Total Marks: 70
1 2	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1 (a)	Define : Signal. Find the fundamental periods (T for continuous-time signals) of the following periodic signals. 1. $x(t) = cos(13\pi t) + 2sin(4\pi t)$ 2. $x[n] = e^{j7.351\pi n}$	07 s, N for discrete-
(b)	 Define: System. Determine whether the system y(t) = t x(t) is 1. Memoryless 2. Linear 3. Time invariant 4. Causal 5. BIBO stable. Justify your answers. 	07
	Compute the convolution $y(n) = x(n) * h(n)$ 1. $x[n] = \delta[n] - \delta[n-2], h[n] = u[n]$ 2. $x[n] = u[n], h[n] = u[n]$ Determine the trigonometric Fourier series for sign	07
(b)	Determine the ingonometric Pointer series for sign $\delta_{T_0}(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0).$ $(t) = \int_{k=-\infty}^{\infty} \delta(t - kT_0).$ $(t) = \int_{k=-\infty}^{\infty} \delta(t - kT_0).$	al given below 07

OR

- (b) Determine the complex exponential Fourier series for
 - 1. $\cos(\omega_0 t)$
 - 2. $\sin^2 t$
- Q.3 (a) Define: The continuous time Fourier transform.
 O7 State and prove Time shifting and Duality properties of continuous time Fourier transform.

07

- (b) Find the Z transform of
 - 1. $\delta(n)$
 - 2. *u*[n]
 - 3. $na^n u[n]$. (1+2+4 Marks)

OR

- Q.3(a) Define: The Z transform.07State and prove Time shifting and Time reversal properties of Z transform.07(b) Find the continuous time Fourier transform071. $\delta(t)$ 07
 - 2. $e^{-at}u[t], a > 0$
 - 3. *u*[t]. (1+2+4 Marks)
- Q.4 (a) Using power series expansion technique find the inverse Z transform of $X(z) = \frac{1}{1 az^{-1}}, |z| > |a|.$
 - (b) The output y[n] of a discrete-time LTI system is found to be $2\left(\frac{1}{3}\right)^n u[n]$ when the input x[n] is u[n]. Find the impulse response h[n] of the system.

OR

- Q.4 (a) Using the partial fraction expansion technique find the inverse Z transform of $X(Z) = \frac{z}{2z^2 3z + 1}, |z| < \frac{1}{2}.$
 - (b) For the differential equation $y[n] \frac{1}{2}y[n-1] = x[n]$ with input $x[n] = \left(\frac{1}{3}\right)^n$ and for initially y[-1] = 1 find the output y[n].
- Q.5 (a) Define: Convolution Sum. Show that
 - 1. $x[n] * \delta[n] = x[n]$
 - 2. $x[n] * \delta[n-n_0] = x[n-n_0]$
 - 3. $x[n] * u[n-n_0] = \sum_{k=-\infty}^{n-n_0} x[k]$
 - (b) A Continuous-time periodic signal x(t) is real valued and has a fundamental 07 period T = 8. The nonzero Fourier series coefficients for x(t) are

$$a_1 = a_{-1} = 2, a_3 = a_{-3}^* = 4j.$$

Express x(t) in the form

$$x(t) = \sum_{k=0}^{\infty} A_k \cos(\omega_k t + \phi_k).$$
OR

Q.5 (a) Define the condition for LTI system to be stable. Which of the following 07 impulse responses correspond to stable LTI systems.

1.
$$h_1(t) = e^{-(1-2j)t}u(t)$$

2.
$$h_n(n) = 3^n u[-n+10]$$

(b) Define Laplace transform. Prove linearity property for Laplace transform. State 07 how ROC of Laplace transform is useful in defining stability of systems.

07

07