Seat No.: Enrolment No.

Subject Name: Basics of Environmental Hydraulics

Subject Code:2141307

Time: 02:30pm to 05:00pm

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (New) EXAMINATION - WINTER 2015

Date:06/01/2016

Total Marks: 70

Inst	tructio	ns:	
	1. 2. 3.	Make suitable assumptions wherever necessary.	
Q.1	(a) (b)	State and derive Pascal's Law. Explain V-notch. Derive a relation for discharge through it.	07 07
Q.2	(a) (b)	Derive a relation for equation of continuity for a 2D flow. Derive Darcy-Weisbach formula. Classify energy losses in pipes. OR	07 07
	(b)	Determine the height of a rectangular weir of length 5m to be built across a rectangular channel. The maximum depth of water on the upstream side of the weir is 1.5 m and discharge is 1.5 m 3 /sec. Take C_d =0.6 and neglect the contraction.	07
Q.3	(a) (b)	Derive an expression for flow rate for an orifice meter. State and differentiate between notches and weir. Discuss the classification of weirs in detail.	07 07
		OR	
Q.3	(a)	Derive a relation for Centre of pressure and total pressure for a vertical surface submerged in water.	07
	(b)	Enlist different types of manometers	07
Q.4	(a)	Derive an expression for the time of emptying a tank through an orifice of a hemispherical tank.	07
	(b)	Describe the concept of fluid as a continuum and control volume concept. OR	07
Q.4	(a) (b)	Explain Energy gradient line and Hydraulic gradient line with the help of an example. Derive an expression for most efficient cross section for a rectangular section.	07 07
Q.5	(a) (b)	Derive empirical formula for the determination of flow through open channel. A horizontal pipe of 400 mm diameter is suddenly contracted to 200 mm diameter. The pressure intensities in the large and small pipe are given as $140 kN/m^2$ and $120 kN/m^2$ respectively. If the rate of flow of water is $200 L/s$, find the value of coefficient of contraction, C_c .	07 07
Q.5	(a) (b)	Explain the term open channel flow. Also discuss various types of open channel. The water is flowing through a taper pipe of length 110 m having diameters 500mm at the upper end and 250mm at lower end, at the rate of 60 L/sec. The pipe has a slope of 1 in 50. Determine the pressure at lower end if the pressure at the higher end is 70kN/m^2 .	07 07
