Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV (New) EXAMINATION - WINTER 2015

Subject Code:2141706			Date:01/01/2016	
Tir	ne: 2 truction	Attempt all questions.Make suitable assumptions wherever necessary.	70	
Q.1	(a)	Explain the following terms: (i) Input offset voltage (ii) Differential Input resistor (iii) CMRR (iv) SVRR (v) output voltage swing (vi) Large signal voltage gain (vii) Input bias current	07	
	(b)	Explain summing, scaling and averaging amplifier using inverting configuration of operational amplifier.	07	
Q.2	(a) (b)	Draw and explain the Voltage series feedback amplifier. Also derive the closed loop voltage gain. Explain basic comparator with its input and output waveforms.	07	
	(b)	OR Explain Schmitt trigger circuit along with circuit diagram and necessary waveforms. State its advantages and applications.	07	
Q.3	(a) (b)	What is Slew rate? What is cause of Slew rate? How we can measure slew rate? Explain effect of slew rate in AC application. Draw op-amp based full wave rectifier (absolute-value output) circuit. Explain its working with necessary input/output waveforms.	07	
Q.3	(a) (b)	OR What is DAC? Explain operation of R-2R Ladder type DAC. Explain basic differentiator and practical differentiator circuit in detail.	07 07	
Q.4	(a)(b)	Explain Instrumentation amplifier with neat diagram. Derive the equation for output voltage. Draw the differential amplifier with one op-amp and derive its voltage gain.	07	
Q.4	(a) (b)	OR Explain first order High pass filter operation with frequency response curve. Design first order High pass filter at a cut-off frequency of 1KHz with a passband gain of 2.Assume C=0.01µf. Explain Positive clipper with necessary waveform for +Vref and -Vref.	07	
Q.5	(a) (b)	Explain Logarithmic amplifier. Explain RC Phase shift Oscillator with frequency of oscillation. OR	07 07	
Q.5	(a)(b)	Explain the operation of 555 IC based monostable multivibrator with necessary circuit diagram and waveforms and its applications. Explain Wien Bridge Oscillator.	07	
