GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – V (NEW) EXAMINATION – WINTER 2015

Subject Code: 2150102		Code: 2150102 Date:05/12/ 20	Date:05/12/ 2015	
Su	bject	Name: Fundamentals of Turbomachines		
Ti	me:1	0:30am to 1:00pm Total Marks:	Total Marks: 70	
Inst	tructio			
		Attempt all questions. Make suitable assumptions wherever necessary.		
		Figures to the right indicate full marks.		
	0.	i gures to the right indicate run marks.		
Q.1	(a)	Explain surging and chocking in axial compressor stage.	07	
	(b)	An axial compressor stage has the following data:	07	
		Temperature and Pressure at entry 300K and 2 bar		
		Degree of reaction is 50%		
		Mean blade ring diameter is 46 cm		
		Rotational speed is 18000rpm		
		Blade height ay entry is 7cm		
		Air angles at rotor and stator exit is 25°		
		Axial velocity is 190m/s Work done factor is 0.88		
		Stage efficiency is 88%		
		Mechanical efficiency is 98%		
		Find out		
		1. Air angles at the rotor and stator entry		
		2. The mass flow rate of air		
		3. The power required to drive the compressor		
		4. The loading efficient		
		5. The pressure ratio developed by the stage		
Q.2	(a)	With the help of diagram, explain the various components of centrifugal	07	
-		compressor.		
	(b)	A Nozzle has a pressure ratio of 1.8, pressure at entry is 1.01325 bar and	07	
		temperature is 280K, efficiency of nozzle is 85%, determine exit velocity and		
		exit mach number.		
	(-)	OR	• -	
	(b)		07	
		derive the expressions for work developed by the turbine and degree of reaction.		
Q.3	(a)	Differentiate turbo-machines and positive displacement machines	07	
	(b)	Explain and draw h-s diagram of an axial flow compressor.	07	
		OR		
Q.3	(a)	Explain elements of a Radial turbine stage with neat sketch.	07	
	(b)	Explain Spouting velocity and Stage efficiency for radial turbine stage.	07	
Q.4	(a)	Explain velocity triangles for a single impulse stage with negative swirl at exit	07	
		and maximum utilization factor with neat sketch.		
	(b)	Explain Multi stage pressure compounded impulse for axial turbine stage.	07	
<u> </u>		OR	o -	
Q.4	(a)	Explain Enthalpy-entropy diagram for 50% & 100% reaction stage for axial turbine stage.	07	

- (b) A gas turbine having single stage rotates at 15000 rpm. The nozzle pressure ratio 3, inlet temperature is 900°C. A gas leaves stage in axial direction, nozzle outlet angle is 25° with tangential and total nozzle loss is 10%. Calculate power output by turbine and gas angles at entry. The mean plate diameter is 70cm, mass flow rate of gas is 25kg/s.
- Q.5 (a) Explain performance charts for zero reaction, 50% reaction, and axial exit for 07 axial turbine stage.
 - (b) Define degree of reaction and derive the expression for the same for axial 07 compressor stage. Also derive 50 % reaction stage.

OR

- Q.5 (a) A Centrifugal compressor operates with no prewal condition and is run with rotor tip speed of 500 m/s, the slip factor is 0.95, Ambient temperature is 16^oC, calculate the following
 - 1. Pressure ratio.
 - 2. Work required per kg of air.
 - 3. power require for flow of 30 kg/s.
 - (b) Explain general matching procedure of components.

07
