GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – V (NEW) EXAMINATION – WINTER 2015

	t Code: 2150403 Date:08/12/2018 t Name: Basics of Reaction Engineering	ate:08/12/2015 Fotal Marks: 70	
Ins	1 2	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
Q.1	(a) (b)	Classify chemical reactions and discuss the variables affecting the rate of reaction. Define and explain the following terms: i) Order of reaction ii) Elementary and non-elementary reactions iii) Activation energy iv) Single and multiple reactions	07 07
Q.2	(a) (b)	Derive the integrated rate expressions for first order and second order $(2A \rightarrow products)$ irreversible reactions. Derive the C_{Rmax} and t_{Rmax} for the first order reactions given below: $A \rightarrow R \rightarrow S$	07 07
		OR	
	(b)	Define autocatalytic reactions. Derive an expression to find its kinetics. Explain plots of rate of reaction Vs. time and concentration Vs. time.	07
Q.3	(a)	Write a short note on temperature dependency of reaction rate constant from Arrhenius law. Compare the same with transition state and collision theories.	07
	(b)	The rate constant of a reaction measured at different temperatures is reported below. Calculate the activation Energy and frequency factor for this reaction.	07
Q.3	(a)	Explain differential and integral method of analysis with their merits and demerits.	07
	(b)	In a batch reactor the conversion of a liquid reactant A is 70% in 13 min. Find the space time required to effect this conversion in a plug flow reactor and in a mixed flow reactor. Assume first order kinetics.	07
Q.4	(a) (b)	Derive performance equation of recycle reactors. Derive an equation for equal-size mixed flow reactors connected in series for first order reaction.	07 07
		OR	
Q.4	(a)	A first order reaction is to be treated in a series of two CSTR. Show that the total volume of the two reactors is minimum when the reactors are equal in size.	07
	(b)	A two-liquid reactant stream with $C_{Ao} = 1$ mol/lit is passing through two mixed flow reactors in series. The concentration of A in the exit stream from the first reactor is 0.5 mol/lit. Find the concentration of A in the exit stream of the second reactor. The reaction $A \rightarrow R$ follows second order kinetics and $V_2/V_1 = 2$.	07

- Q.5 (a) Explain quantitative product distribution for mixed flow reactors for the reaction 07 $A \rightarrow R \rightarrow S$. 07
 - (b) Write a short note on Optimum Temperature Progression profile.

- Q.5 (a) State the quantitative treatment method of product distribution for reactions in 07 parallel.
 - (b) Define space time and space velocity. Derive the design equation of steady-state 07 mixed flow reactor.
