GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – V (NEW) EXAMINATION – WINTER 2015

Subject Code: 2150501 Subject Name: Mass Transfer Operation - I Time: 10:30am to 1:00pm Instructions: Date: 17/12/ 2015

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) A counter current plate absorber is to be installed for scrubbing of an air mixture containing 5% ammonia by volume. The scrubber is fed with water containing 0.002 mole NH₃/mole of water. The scrubber water flows at a rate of 1 mole water/mole of air. It is necessary to absorb 85% of the ammonia present in the gas by operating the absorber at 20 $^{\circ}$ C. Assume dilute solution, take Henry's law constant = 0.8 mole NH₃ / (mole NH₃/mole H2O). Calculate number of stages necessary for this operation.
 - (b) Classify the mass transfer operations based on direct contact of two immiscible 04 phases with examples.
- Q.2 (a) Solute in water solution containing 1% solute is to be extracted with solvent containing 0.2% solute. Water and solvent are completely insoluble. Determine the number of stages required for 70% extraction of solution of that in the feed. Feed solution = 100 kg, solvent in each stage = 99 kg. Use following equilibrium data:

Kg	0	0.001011	0.00246	0.00502	0.00751	0.00998	0.0204
solute/							
kg							
water							
Kg	0	0.000807	0.001961	0.00456	0.00686	0.00913	0.01870
solute/							
kg							
solvent							

(b) Define : (i) F- type mass transfer co-efficient (ii) k-type mass transfer co-efficient (iii) Sherwood number (iv) Peclet number (v) Film Reynold's number (vi) Diffusional sub layer (vii) Mean free path

OR

- (b) Explain the film theory for mass transfer co-efficient. 07
- Q.3 (a) Explain the empirical correlation for determination of diffusivity of gases. 07
 - (b) State Fick's first law and compare : (i) Molecular diffusion and Eddy diffusion 07
 (ii) N- type flux and J-type flux

OR

- Q.3 (a) Discuss the concept of equilibrium in gas absorption for ideal liquid solution 07 and non ideal liquid solution.
 - (b) Show that overall resistance in diffusion between two phases follows two 07 resistance theory.
- Q.4(a) State the operational difficulties in tray tower and discuss briefly.07(b) Describe the working of venture scrubber and wetted wall tower.07

OR

Q.4 (a) Discuss the selection between tray tower and packed tower.
 (b) In oxygen – nitrogen mixture at 10 atm and 25 °C, the concentrations of oxygen
 07

at two places of 0.2 cm apart are 10 and 20 volume % respectively. Calculate the rate of diffusion of oxygen expressed as gm/cm²hr for the case of unicomponent diffusion. Take diffusivity = $0.181 \text{ cm}^2/\text{sec}$

- Q.5 (a) Classify the equipments used for leaching of vegetable seeds and explain 07 working of Boll man extractor.
 - (b) A crystallizer is charged with 100 kg of a solution containing 25% Ba(NO₃)₂ in water. On cooling 10% of the original water present evaporates. Calculate the yield of crystals when the solution is cooled to 283 K. The solubility at 283 K is 7 kg Ba(NO₃)₂ /100 kg total water.

OR

Q.5(a) Explain the types of equilibrium curves occur in leaching.07(b) Define 'Supersaturation' and explain Mier's supersaturation theory.07
