GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – V (NEW) EXAMINATION – WINTER 2015

	Subject Code: 2151002 Date:05/12		2/ 2015	
Subject Name: Engineering Electromagnetic Time:10:30am to 1:00pm Total Mark Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.			ks: 70	
Q.1	(a) (b)	 With neat and clean sketches explain cylindrical coordinate system. Solve the followings(Four Marks each) 1) The vector from the origin to point A is given as (6,-2,-4) and the unit vector directed from the origin toward point B is given by (2,-2,1)/3. If point A & B are 10 unit apart, find the coordinate of B. 2) Transform the given vector A = r² ar + sin θ a_φ into rectangular coordinate. 	06 08	
Q.2	(a) (b)	Derive the expression for the electric field due to infinitely long line charge located on the z axis at any arbitrary point $P(\rho, \phi, z)$. Define line charge. Infinite uniform line charge of 5 nC/m, lie along the (positive and negative) x and y axes in free space. Find E at point P(0,0,4).	07 07	
	(b)	OR Define sheet charge. Planes $x = 2$ and $y = -3$, respectively carry charges 10 nC/m ² and 15 nC/m ² . Calculate E at P(1,1,-1) due to these charge distributions.	07	
Q.3	(a) (b)	State and prove Gauss's Law. Derive the point form of Gauss's Law relates the flux leaving any closed surface to the charge enclosed. Evaluate both sides of divergence theorem for the field $\mathbf{D} = 2xy \mathbf{a_x} + x^2 \mathbf{a_y} C/m^2$ and the rectangular parallelepiped formed by the planes $x = 0$ and 1, $y = 0$ and 2 and $z = 0$ and 3.	07 07	
Q.3	(a) (b)	OR Write a brief note on potential gradient. A dipole of moment $\mathbf{p} = 6\mathbf{a}_z$ nC.m is located at the origin in free space. Find the potential V & Electric Field intensity E at point P(r = 4, $\theta = 20^\circ$, $\phi = 0^\circ$).	07 07	
Q.4	(a) (b)	Write brief note boundary conditions for perfect dielectric materials. Find E at point P(3,1,2) for the two coaxial conducting cylinders, if potential $V = 50$ V at $\rho = 2$ m and $V = 20$ V at $\rho = 3$ m.	07 07	
Q.4	(a)	OR State Bio-Savart law for the steady magnetic field. Also derive the expression for the magnetic field intensity for an infinitely long straight filament carrying a direct current I.	07	
	(b)	For any vector field, show explicitly that divergence of the curl of any vector is zero.	07	
Q.5	(a)	Derive the expression for the torque acting on the loop in the presence of magnetic field \mathbf{B} , relating the dipole moment and the magnetic field \mathbf{B} .	07	
	(b)	State Maxwell's equations in integral form and explain physical significance of the equations.	07	
Q.5	(a)	OR State and prove Poynting's theorem relating to the flow of energy at a point in	07	

Q.5 (a) State and prove Poynting's theorem relating to the flow of energy at a point in 07 space in an electromagnetic field.

(b) Write a brief note on uniform plane wave propagation in free space.