GUJARAT TECHNOLOGICAL UNIVERSITY BE – SEMESTER – V (NEW) EXAMINATION – WINTER 2015

Subject Code: 2151908 Subject Name: Control Engineering Time:10:30am to 1:00pm Instructions:

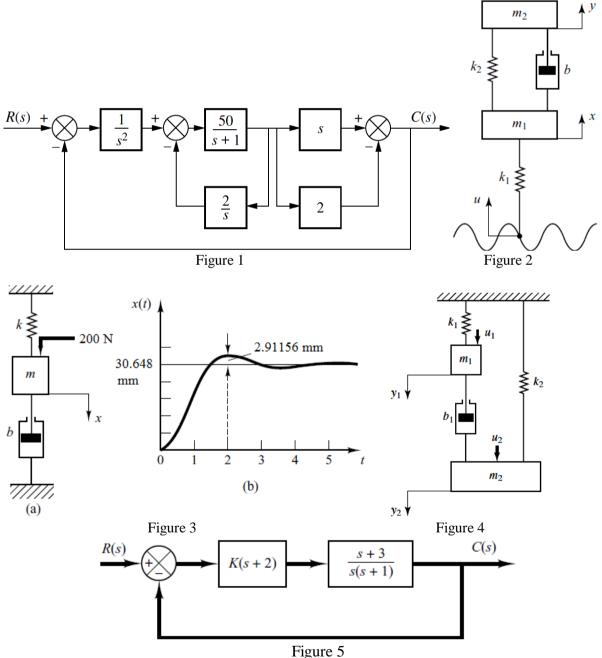
Date:14/12/ 2015 Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	 With a suitable example, explain following terms related to a control system. (a) Control Variable (b) Manipulated Variable (c) Plant (d) Process 	04
	(b)	 State and explain conditions for a system to be a linear system. Derive expressions of rise time and peak time for a second order under damped system excited by a unit step input. 	03 07
Q.2	(a) (b)	From the block diagram in Figure 1, to obtain a transfer function $C(S) / R(S)$. Obtain the transfer function $Y(s)/U(s)$ of the system shown in Figure 2. The displacement input is $u(t)$.	07 07
	(b)	OR A mechanical system (Figure 3(a)), is subjected to a step input of 200 N. The response curve for the same is shown in Figure 3(b). Determine mass m , spring constant k and damping coefficient b of the system from this response curve.	07
Q.3	(a)	A system is described by following a set of linear algebraic equations. Draw signal flow graph and obtain transfer function of the system using Mason's gain formula. $x_2 = a_{12}x_1 + a_{22}x_2 + a_{32}x_3$	07
		$x_3 = a_{23}x_2 + a_{43}x_4$	
		$x_4 = a_{24}x_2 + a_{34}x_3 + a_{44}x_4$	
		$x_5 = a_{25}x_2 + a_{45}x_4$	
	(b)	Obtain a state-space representation of the mechanical system shown in Figure 4. Consider u_1 and u_2 as inputs and y_1 and y_2 as outputs. OR	07
Q.3	(a)	 Enlist limitations of Routh's stability criterion. Consider following characteristic equation. Using Routh's stability criterion, determine the range of K for stability. S⁴ + 2S³ + (4 + K)S² + 9S + 25 = 0 	02 05
	(b)	 Compare the hydraulic system with the pneumatic system. Explain working principle of a dashpot system (hydraulic damper). 	03 04
Q.4	(a)	Draw a neat sketch of a hydraulic servomotor and prove that it acts as an integral controller.	07
	(b)	With the help of a neat sketch, explain how proportional control is achieved in a force-balance type pneumatic controller. Derive the expression for gain for the same.	07
0.4	(\mathbf{c})	OR Draw a peak sketch of a pneumatic PID controller, its block diagram and state the	07

Q.4 (a) Draw a neat sketch of a pneumatic PID controller, its block diagram and state the 07 transfer function for the same.

A closed-loop control system is represented by the differential following equation, 07 **(b)** where *e* is the error signal given as (r - c).


 $\frac{d^2c}{dt^2} + 4\frac{dc}{dt} = 16e$. Determine undamped natural frequency, damping ratio and

percentage of maximum overshoot for unit-step input.

- For a second-order system with a sinusoidal transfer function, derive the 07 Q.5 **(a)** expression of the resonant peak. 07
 - Enlist steps for plotting root locus. **(b)**

- Q.5 Explain frequency response specifications (1) Resonant peak (2) Band width (3) 07 **(a)** Resonant frequency. Also write the equation of each.
 - Assuming gain K to be positive, plot root loci for the system shown in Figure 5. Is 07 **(b)** system stable?

OR
