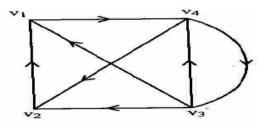

## **GUJARAT TECHNOLOGICAL UNIVERSITY** MCA Integrated – SEMESTER – II • EXAMINATION – SUMMER - 2016

| Subject Code: 4420601Date: 25-05-2016Subject Name: Discrete Mathematics for Computer ScienceTime: 10.30 am To 01.00 pmInstructions:1. Attempt all questions. |             |                                                                                                                                                                                   |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                                                              |             | Make suitable assumptions wherever necessary.<br>Figures to the right indicate full marks.                                                                                        |          |
| Q.1                                                                                                                                                          | (a)         | Prove the following Distributive inequalities:<br>(1) $a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$<br>(2) $a * (b \oplus c) \le (a * b) \oplus (a * c)$                     | 07       |
|                                                                                                                                                              | <b>(b</b> ) | Prove that $S_6 = \{1,2,3,6\}$ is a sub lattice of $\langle S_{30}, D \rangle$ .                                                                                                  | 07       |
| Q.2                                                                                                                                                          | (a)         | Define Sub Boolean Algebra. State the necessary and sufficient condition for a subset becomes sub-boolean algebra. Find all sub Boolean algebra of $\langle S_{110}, D \rangle$ . | 07       |
|                                                                                                                                                              | <b>(b</b> ) | Explain all properties of Boolean algebra.                                                                                                                                        | 07       |
|                                                                                                                                                              | (b)         | <b>OR</b><br>Show that set of fourth root of unity $\{1,-1,i,-i\}$ forms the group with respect to the multiplication where i denotes the complex number and $i^2 = -1$ .         | 07       |
| Q.3                                                                                                                                                          | (a)         | Write the following Boolean expression in Sum-Of-Product Canonical form in four variables $X_1, X_2, X_3, X_4$ . $X_1 \oplus X_2$                                                 | 07       |
|                                                                                                                                                              | (b)         | Find the minimal SOP form using Quine – McCluskey method.<br>$F(a,b,c,d) = \sum 0,1,2,5,6,7,8,9,10,14.$                                                                           | 07       |
| Q.3                                                                                                                                                          | (a)         | <b>OR</b><br>Define K-map. Use the K-map representation to find SOP expression of $f(x,y,z,w) = \sum (0,1,2,3,13,15)$                                                             | 07       |
|                                                                                                                                                              | (b)         | Prove that the set $G = \{0,1,2,3,4\}$ is a finite abelian froup of order 5 with respect to addition modulo 5.                                                                    | 07       |
| Q.4                                                                                                                                                          | (a)         | Show that $\langle Z_8 \rangle$ , $+_8 \rangle$ is a cyclic group of order and also find its generator.                                                                           | 07       |
|                                                                                                                                                              | (b)         | Let $4Z = \{\pm 4, \pm 8, \pm 12, \ldots\}$ Construct $\frac{Z}{4Z}$ and construct composition table.<br>OR                                                                       | 07       |
| Q.4                                                                                                                                                          | (a)         |                                                                                                                                                                                   | 04<br>03 |


- (b) Find in-degree and out-degree of each node from the following adjacency 07 matrix A and also draw its diagraph.
  - $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
- **Q.5** (a) Give three other representations of tree expressed by  $(V_0(V_1(V_2) (V_3) (V_4))(V_5(V_6) (V_7) (V_8) (V_9))(V_{10}(V_{11}) (V_{12})))$ 
  - (b) Show through two examples with  $n_t = 7$  and  $n_t = 8$  of complete binary tree that **07** the total number of edges is given by  $2(n_t 1)$ , where  $n_t$  is the number of terminal nodes.

## OR

Q.5 (a) Define node base of a diagraph. Find all node base of the diagraph in the 07 following graph. List all the properties of a node base.



(b) Define adjacency matrix of a graph and obtain the adjacency matrix (A) for the following graph. State the in degree and out degree of all the vertices. Find A<sup>2</sup>, A<sup>3</sup> and Path matrix P.



\*\*\*\*\*

07