Seat No.:	Enrolment No.
-----------	---------------

Subject Name: Discrete Mathematics for Computer Science

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Subject Code: 2610003

Instructions:

0.1

Time: 02.30pm to 05.00 pm

1. Attempt all questions.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- 1 EXAMINATION - SUMMER 2016

(a) Define distributive lattice. Prove that every chain is distributive lattice. Prove

Give an example of a relation which is neither reflexive nor irreflexive.

that the power set lattice is a complemented distributive lattice.

Date:09-05-2016

Total Marks: 70

07

02

		 Give an example of a relation which is both symmetric and antisymmetric Given S = {1,2,,10} and a relation R on S where R = {<x, y=""> / x + y = 10} what are the properties of the relation R?</x,> 	02 03
Q.2	(a)	 Determine the truth value of each statement given below. The domain of discourse is the set of real numbers. Justify your answers. i) For every x, x² > x ii) For some x, x² > x iii) For every x, if x > 1 then x² > x. 	03
	(b)	2) Prove using Indirect proof technique that if $n2 + 3$ is odd then n is even. 1) Given an expression $\alpha(x1, x2, x3)$ defined to be $\sum(0, 3, 5, 7)$, determine the	04 04
	` ,	value of $\alpha(a, b, 1)$, where $a, b, 1 \in B$ and $\langle B, *, \oplus, `, 0, 1 \rangle$ is a Boolean algebra given in the following figure.	
		a b	
		0	03
		2) Define poset, lattice and chain. Give one example of each with your justification. Draw their Hasse diagrams also. OR	
	(b)	1) Draw the Hasse diagram of the following lattices. $, D>, , D>, x S_{25}, D>, x S_6, D>. Which of them are isomorphic?$	04
		2) Define complemented lattice. Find the compliments of every elements of the lattice $\langle Sn, D \rangle$ for $n = 75$.	03
Q.3	(a)	Define Boolean function. Use the Karnaugh map representation to find a minimal sum of products expression of the following function : $f(x_1, x_2, x_3, x_4) = \sum (14, 13, 11, 5, 2, 1)$	07
	(b)	1) Let $(B, *, \oplus, ', 0, 1)$ be a Boolean algebra prove the following :	04
		$a = b \Leftrightarrow (a * b') \oplus (a' * b) = 0$ 2) Obtain the sum of product canonical form of Boolean expression in three variables x1, x2, x3 for (x1 \oplus x2) * x3 OR	03
Q.3	(a)	 Define "Universal quantifier" and "Existential quantifier". (1) Formulate the symbolic expression for i) p → q 	07
		/ 1 1	1

ii) $(p \lor q)' \leftrightarrow r$

in words using:

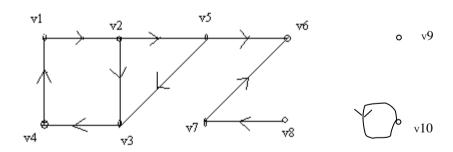
p: Today is Monday

q: It is raining

r: It is hot.

(2) State the rule UG in the predicate calculus. Verify whether the following conclusion is valid or not.

$$(x)(P(x)\rightarrow Q(x)), \exists Q(a) => (x) \exists P(x)$$


- (b) Use the Quine-McClusky algorithm to obtain the minimal SOP form of the function $f(a, b, c, d) = \sum (0, 2, 5, 7, 8, 10, 13, 15)$
- Q.4 (a) Define cyclic group. Show that cyclic group is abelian but converse is not true. 07 Is $\langle z_5, +_5 \rangle$ a cyclic group? If so, find its generators.
 - (b) Define symmetric group <S $_3$, $\diamond>$. Write all its elements and composition table. 07 Show that it is non-abelian. Determine all the proper subgroups of <S $_3$, $\diamond>$.

OR

- **Q.4** (a) Define left coset of a subgroup <H, *> in the group <G, *>. Find left cosets of $\{[0], [3]\}$ in the group <Z₆, +₆>.
 - (b) Define kernel of a group homomorphism. If $\langle G, * \rangle$ and $\langle H, \Delta \rangle$ are two group and g: G \rightarrow H is a homomorphism, show that ker(g) is a normal subgroup of $\langle G, * \rangle$.
- Q.5 (a) Give an abstract definition of graph. When are two simple graphs said to be isomorphic? Give an example of two simple digraphs having 4 nodes and 4 edges which are not isomorphic.
 - (b) Define a directed tree. Draw the graph of the tree represented by (A(B(E(H)(I))(F(J)(K))(G(L)))(C(M(O))(N(P)(Q)))(D(R(S(V))(T)(U))))
 Obtain the binary tree corresponding to it.

OR

- Q.5 (a) 1) Define Cyclic graph, Null graph, and Strongly connected graph.
 2) Define Adjacency matrix and path matrix of a graph. Explain each with example.
 - (b) Define nodebase of a simple diagraph. Find the reachability set of all nodes for the diagraph given in following figure. Also find the nodebase for it.
