GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER- II• EXAMINATION – SUMMER 2016

		Code: Comj Name: 6200	-	riented	l Nume	rical M	lethods	Da	ate: 30-05-2()16
Tim	e: 10).30a.m. To		m.				Т	otal Marks:	70
Instr	1. 2.		assumpt			cessary.				
Q.1	(a)	 5. What 6. State 7. State 	e Round e Trunca e Total N Descarte is a matr any three the condi	off error tion error lumerica 's rule of ix? types of tion for	rs. l errors sign. matrices multiplic	ation of 1	two matric	ces.		07
	(b)	Define error.	Explain	the types	of error	s with ex	amples.			07
Q.2	(a)	Write an algorithm to solve a non-linear polynomial equation by Successive Approximation method.								
	(b)	Solve the equ 1.9.	ution x ³ -	$4x^2 + 5x - 2$	•	U	ta method	taking	initial guess as	07
	(b)	OR Solve the equation x^4 -x-10=10 by Newton Raphson method, taking initial guess 07 as 2.0.								
Q.3	(a)	Find y(10) from the data given below using Lagrange's interpolation. x 5 6 9 11 y 12 13 14 16							07	
Time: Instruct Q.1 (a (1) Q.2 (a (1) Q.3 (a (1) Q.3 (a)	(b)									07
		Age (x) Premium	45 114.84	50 96	.16	55 83.22	60 74.	48	65 68.48	
		(y)			()R				
Q.3	(a)	Obtain cubic	spline eq	uation fo] for the c	lata give	en in the table:	07
		X	0		1		2		3	
		f(x)	1		2		33		244	
	(b)	data accordin	g to least	square e		-		est fit to	the following	07
		x 1.0	1.5	2.0	2.5	3.0	3.5	-		
		y 0.01	0.405	0.693	0.916	1.098	1.252			

Q.4 (a) The table below gives the results of an observation, 'θ' is the observed temperature in degrees centigrade of a vessel of cooling water, 't' is the time in minutes from the beginning of observation.

t	1	3	5	7	9				
θ	85.3	74.5	67.0	60.5	54.3				
Find the engenmiests note of expline at $t=2$ and $t=2.5$									

Find the appropriate rate of cooling at t=3 and t=3.5.

(b) Find the first two derivatives of ' $x^{1/3}$ ' at x=50 and x=56 from the table below:

Х	50	51	52	53	54	55	56			
$y = x^{1/2}$	^{/3} 3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259			
OR										

- Q.4 (a) A Curve passes through the points (1, 2), (1.5, 2.4), (2.0, 2,7), (2.5, 2.8), (3, 3), (3.5, 2.6) and (4.0, 2.1). Obtain the area bounded by the curve, the X-axis and x=1 and x=4.
 - (b) A river is 80 metres wide. The depth 'd' in metres at a distance 'x' metres from 07 one bank is given by the following table. Calculate the area of cross-section of the river using Simpson's 1/3 rule.

x (distance in metres)	0	10	20	30	40	50	60	70	80
d (depth in metres)	0	4	7	9	12	15	14	8	3

- Q.5 (a) Use Milne-Simpson's Predictor corrector formula to solve $y'=2y-y^2$, for x= 0.2 and x=0.25 if y(0) = 1 y(0.05) = 1.0499584 y(0.10) = 1.0996680
 - y(0.15) = 1.148850
 - (b) Solve the following system of linear equations using Gauss-Seidel method: 07 $2x_1 - 2x_2 + 5x_3 = 13$
 - $2x_1 + 3x_2 + 4x_3 = 20$
 - $3x_1 x_2 + 3x_3 = 10$

OR

- Q.5 (a) Solve the following ordinary differential equation using Taylor series method: 07 $y' = y^2 + x$; given that y(0) = 0, find y(0.2).
 - (b) Use Runge Kutta 4th order method to solve y(0.2) and y(0.4) when y' = $(2xy + e^x)/(x^2 + x.e^x)$; given that y(0) = 0 and h = 0.2.

07

07