GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER II - EXAMINATION - WINTER 2015

Subject Code: 620005 Date: 07/12/2015

Subject Name: Computer Oriented Numerical Methods

Time: 02:30 PM to 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the following terms:

1 Dian Jana

- 1. Blunders
- 2. Formulation Errors
- 3. Data Uncertainty
- 4. Total Numerical Error
- (b) Let x = 0.00458529. Find the absolute error if x is rounded-off to three decimal digits. 03
- (c) What are the similarities and differences between Secant method and False Position method of finding root of a given equation f(x) = 0. Which one is best? Why?
- Q.2 (a) Geometrically explain Newton-Raphson method to find a root of the equation f(x) = 0 and hence drive the general formula. Also, discuss the pit-falls of Newton-Raphson method.
 - (b) Obtain positive numerical solution of $x^3 + x^2 3x 3 = 0$ using bisection method correct to four significant figures. Using Descarte's rule of sign, find how many roots the function has.

OR

- (b) Can Birge-Vieta method be used to find roots of any f(x) = 0? Find the root of the equation $x^3 + 2x^2 + 10x 20 = 0$ correct up to three significant digits using Birge-Vieta method (Hint: Take $r_0 = 1$).
- Q.3 (a) Discuss different type of difference table in detail with an assumed suitable example.
 - (b) Fit the following data with the power model $(y = ax^b)$. Use the resulting power equation to predict y at x = 9.

)	x	2.5	3.5	5	6	7.5	10	12.5	15	17.5	20
y	y	13	11	8.5	8.2	7	6.2	5.2	4.8	4.6	4.3

OR

Q.3 (a) From the following table, find P when t = 142 °C and 175 °C, using appropriate Newton's Interpolation formula.

Temp (t) °C: 140 150 160 170 180 Pressure (P) kgf/cm²: 3.685 4.854 6.302 8.076 10.225

(b) What is inverse interpolation? Estimate value of x given following data when y = 0.390.

х	0	1	3	4	7
F(x)	1	3	49	129	813

Q.4 (a) The values of pressure and specific volume of super heated steam are as follows:

Volume (V):	2	4	6	8	10
Pressure (P):	105.00	42.07	25.30	16.70	13.000

Find the rate of change of pressure with respect to volume when V = 2 and V = 8.

04

07

07

07

07

07

07

07

07

07

OR

Q.4 (a) A body is in the form of a solid of revolution, whose diameter d in cm of its sections at various distances *x* cm from one end is given in the table below. Compute the volume of the solid.

x:	0	2.5	5.0	7.5	10.0	12.5	15.0
<i>d</i> :	5.00	5.5	6.00	6.75	6.25	5.5	4.00

(b) The function $y = \sin(x)$ is tabulated below. Find the value of $\cos(1.74)$ and $\cos(1.84)$ 07 using interpolation technique.

X	1.70	1.74	1.78	1.82	1.86
sin(x)	0.9917	0.9857	0.9782	0.9691	0.9585

- Q.5 (a) Given the following differential equation $\frac{dy}{dx} = \frac{1 xy}{x^2}$, with y(1) = 1. Compute y(1.1),
 - y(1.2) and y(1.3) using Runge-Kutta third order method and obtain y(1.4) using Milne- Simpson's predictor corrector method.
 - (b) Using Gauss Seidal method, solve the following set of simultaneous equations upto 07 three decimal place accuracy. Do partial Pivoting

$$x +3 y + z = 10$$

 $x +2y+5z = 12$
 $4x + y + 2z = 16$

OR

Q.5 (a) Given the following differential equation $\frac{dy}{dx} = (x + y)e^{-x}$, with y(-0.1) = 0.9053.

Compute y(0), y(0.1) using Runge-Kutta second order method and obtain y(0.3) using Adam- Bashforth-Moulton's predictor corrector method.

(b) Find numerically largest eigen value and corresponding eigen vector of the following matrix using power method by taking $X_0 = [1,1,0]^T$.

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$
