Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA - SEMESTER- II • EXAMINATION – WINTER 2015

Subject Code: 620007 Subject Name: Theory of Computation Time: 02.30 pm to 05.00 pm Instructions: Date: 09/12/		Code: 620007 Date:09/12/201	Date:09/12/2015	
		s: 70		
	1.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (b)	Write De Morgan laws & prove it using truth table. Let $A = \{10, 15\}$ and $B = \{10, 20\}$. Find $P(A)$, $P(B)$, $P(A-B)$.	07 07	
Q.2	(a)	 Write regular expression for the following: 1) Identifier with minimum string length is 1, contains only letter, underscore and digits. It must begin with letter or underscore. 2) String ending in 1 and not containing 00. 	07	
	(b)	Verify that! Given statement is a tautology: p V q V r V s OR	07	
	(b)	Let P(n) be the statement, $1+2++n=[n(n+1)/2]$. To show that P(n) is true for every $n \ge 0$, using mathematical induction principle.	07	
Q.3	(a)	Define Finite Automata. Explain all terms involved in definition. Write one suitable example of Finite Automaton.	07	
	(b)	Draw transition diagram and transition table to recognize $\{0, 1\}^*\{10\}$. OR	07	
Q.3	(a) (b)	Define Nondeterministic Finite Automata. Explain all terms involved in definition. Write one suitable example of Nondeterministic Finite Automaton. Draw an NFA- Λ that accepting $\{0\}\{1\}^*$ U $\{0\}^*\{1\}$.	07 07	
Q.4	(a)	Define Context-Free Grammar (CFG). Explain all terms involved in definition.	07	
	(b)	Write one suitable example of CFG. Consider given production rules: $S \rightarrow S + S \mid S - S \mid S * S \mid S / S \mid (S) \mid a$ Derive: $(a - a) * (a + a)$	07	
		OR		
Q.4	(a)	Define Pushdown Automaton (PDA). Explain all terms involved in definition. Write one suitable example of PDA.	07	
	(b)	Write state transition table Deterministic PDA that accept string with more a's than b's with suitable example.	07	
Q.5	(a) (b)	Explain top-down parsing with suitable example. Explain bottom-up parsing with suitable example. OR	07 07	
Q.5	(a)	Define Turing Machines (TM). Explain all terms involved in definition. Write one suitable example of TM.	07	
	(b)	Draw state transition diagram, a TM accepts {a, b}*{aba}	07	
