GUJARAT TECHNOLOGICAL UNIVERSITY MCA - SEMESTER-IV • EXAMINATION - WINTER 2015

Subject Code:640005 Date:09							
	:10.30 tions: 1. At 2. M	Ime: Data Warehousing & Data Mining) a.m. To 01.00 p.m. Total Marks: Itempt all questions. Total Marks: Take suitable assumptions wherever necessary. Total Marks. gures to the right indicate full marks. Total Marks.	70				
Q. 01	(a)	 Answer The following Questions (i) Define The Term "Data Warehouse". (ii) What is ROLAP? (iii) What is Data Mining? (iv) Give The Full-Form of "OLAP". 					
	(b)	 Answer The following Questions (i) Define The Term "Virtual Warehouse". (ii) What is Data cleaning in Data Preprocessing? (iii) What is Data Generalization? (iv) What is the accuracy of classifier? 					
Q. 02	(a) (b)	 Answer The following Questions (i) Define The Term "Supervised Learning". (ii) What is Learning by Observation? (iii) What is Lift-ratio for Association Rule Mining? (iv) What is Prediction? Differentiate Operational Database Systems and Data Warehouses. 					
		OR					
	(b)	Explain Three-Tier Data Warehouse Architecture.	[07]				
Q. 03	(a)	Find out the Association Rules from Given Dataset with respect to [(Minimum Support = 60% and Minimum Confidence = 80%. Obtain the Rules with Degree 1 only. i.e. for any transaction, $buys(X, item1) \rightarrow buys(X, item3)$ Transection ID Items Bought T001 {M, O, N, K, E, Y}					

Transection ID	Items Bought
T001	{M, O, N, K, E, Y}
T002	$\{D, O, N, K, E, Y\}$
T003	$\{M, A, K, E\}$
T004	$\{M, U, C, K, Y\}$
T005	$\{C, O, O, K, I, E\}$

(b) Answer The following Questions

- (i) How is class comparison performed? [04] [03]
- (ii) What is Attribute Generalization?

Using the Following contingency table of supermarket transaction data, [07] Q. 03 (a) answer the following.

	Hot – Dog	$\overline{Hot-Dog}$	\sum_{row}
Hamburgers	2000	500	2500
Hamburgers	1000	1500	2500
\sum_{coloum}	3000	2000	5000

- (i) Is the association rule "Hot-dog \rightarrow Hamburger" Strong? Minimum Support = 25% and Minimum Confidence = 50%.
- (ii) What kind of correlation relationship exists between the purchase of hot dogs & the purchase of hamburgers?

Answer The following Questions (b)

- (i) Explain the Attribute Oriented Induction. [04]
- (ii) What is Class Characterization?
- Q. 04 Predict the class label "Defaulted Borrower" of the test record [07] (a) X = (Home Owner = No; Marital Status = Married; Income = 1,20,000) using Naïve Bayes classifier on following data:

Sayes classifier on following data.					
ID	Home	Marital	Annual	Defaulted	
	Owner	Status	Income	Borrower	
1	Yes	Single	1,25,00 0	No	
2	No	Married	1,00,00 0	No	
3	No	Single	70,000	No	
4	Yes	Married	1,20,00 0	No	
5	No	Divorced	95,000	Yes	
6	No	Married	60,000	No	
7	Yes	Divorced	2,20,00 0	No	
8	No	Single	85,000	Yes	
9	No	Married	75,000	No	
10	No	Single	90,000	Yes	

Answer The following Questions (b)

- (i) How to compare the Accuracy of Classifier?
- [04] Explain: Concept Hierarchy Generation with Binning and Histogram [03] (ii) Analysis.

OR

[03]

the predicating attribute.						
ID	Owns Home	Gender	Employed	Risk Class		
1	Yes	Male	Yes	В		
2	No	Female	Yes	Α		
3	Yes	Female	Yes	С		
4	Yes	Male	No	В		
5	No	Female	Yes	С		
6	No	Female	Yes	Α		
7	No	Male	No	В		
8	Yes	Female	Yes	Α		
9	No	Female	Yes	С		
10	Yes	Female	Yes	С		

Q. 04 (a) Find out which attribute is suitable to be the perfect split point from the [07] Given data, use information gain measure. Calculate only first split point. "Risk Class" is the predicating attribute.

(b) Answer The following Questions

- (i) Discuss the essential data preparing steps for classification and **[04]** prediction.
- (ii) How to Generate Concept Hierarchy for Categorical data? [03]

Q. 05	(a)	Explain K-Mea	ns Algorithn	n with its pseudo-	code and example.	[07]

(b) Answer The following Questions

- (i) List out Four Typical cases of Data Mining in Retail Industry. [04]
- (ii) Explain: Density-based Clustering method. [03]

OR

Q. 05	(a) (b)	What is an outlier? Explain Statistical Distribution-Based Outlier Detection. Answer The following Questions		
	(~)	(i) List out Four Typical cases of Data Mining in Telecommunication	[04]	
		Industry.(ii) Explain: Constraint-based Clustering method.	[03]	
