Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER II (OLD) – • EXAMINATION – SUMMER 2016

Subject Code: 1721802

Subject Name: Treatment Process Design and Drawings Time:10:30 am to 01:00 pm

Date: 18/05/2016

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) A grit chamber has a wastewater depth of 0.8 m. Calculate the time 07 required by a 0.2 mm sand particle to settle at the bottom. Also determine the length of the grit chamber if the flow through velocity is 0.3 m/sec.
 - (b) The diameter of clarifier is 18 m and wastewater flow rate 10 MLD. 07 Calculate the detention time and Surface loading rate of the clarifier having a wastewater depth of 2.5 m.
- Q.2 (a) Design a grit chamber having rectangular channel and proportional 07 weir for peak flow of 8 MLD. Assume design velocity 0.23 m/sec.
 - (b) Design a tube settler of square cross section with following data: 07
 - (i) Design flow = 1 MLD
 - (ii) Cross Section of tube = 50 mm x 50 mm
 - (iii) Length of tube = 1 m
 - (iv)Angle of inclination = 60^{0}

OR

(b) Write a short note on "Tube Settler". 07

Q.3 (a) Design a clariflocculator for a design flow of $16 \times 10^3 \text{ m}^3/\text{day.}$ 14 Assume suitable data.

OR

- Q.3 (a) Design a circular sedimentation tank for design flow of 21,000 14 m³/day. Assume SOR is 35 m³/m².day. Check for WOR & Horizontal velocity.
- Q.4 (a) Design a Rapid Sand Filter system for a flow 27 MLD. Assume 14 Suitable data.

OR

Q.4 (a) An activate sludge plant is to be design for 10 MLD domestic 14 wastewater flow to operate at 10 days MCRT and 6 hrs of HRT. Assume BOD as 175 mg/L in influent to the aeration tank, sludge wasting flow equal to 70 m³/day and returned sludge concentration equal to 8000 mg/L, determine the concentration of MLVSS to maintain in the aeration tank to achieve effluent BOD of 30 mg/L. Also determine recirculation ration at which plant should be operated. Assume $K_d = 0.6 \text{ day}^{-1}$ and Y = 0.6

Q.5	(a)	Define following terms:	07
		(i)A/c ratio (ii) Liquid to gas ration (iii) Can Velocity (iv) Pressure	
		Drop (v) Drift Velocity (vi) Filter Drag (vii) Saltation velocity	
	(b)	Design a venturi scrubber for a flow of 5 m ³ /sec	07
		OR	
Q.5	(a)	A conventional cyclone with a diameter of 2 m handles 4 m ³ /sec of	07
		standard air carrying particles with density of 1600 kg/ m^3 for Ne =	
		7. Determine the cur size diameter if the gas viscosity is 1.84×10^{-5}	
		kg.m/sec and the gas density is 1.185 kg/m^3 .	

(b) Determine the number of bags for a flow of 15 m³/sec & also shows 07 its arrangement in the bag house.
