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GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER | (NEW) —« EXAMINATION - SUMMER 2016

Subject Name: Applied Linear Algebra

Time:02:30 pm to 05:00 pm

Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
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(1) Express the vector v = (6,11,6) as a linear combination of v; = (2,1, 4),
v, =(1,—-1,3)and v; = (3,2,5)

(2) Determine whether the following set of vectors form a basis for R2.
(1,1,1), (1, 2, 3), (2,-1,1)

Check whether the following are subspace of R3, Justify your answer. State all
possible subspaces of R3.

(1) W ={(x,0,0] x € R}

QW ={(xy,zlx* + y* +2z% <1}

BYW={(xy,zly=x+2z+ 1}

Determine whether the following functions are linear transformation :
(1) T:M,,, = M,,,, where T(A) = AT

) T:My, — R, T ([‘CL Z]) = a2 + b2

Let T: R® — R3 be multiplication by A. Determine whether T has an inverse. If

X1 1 4 -1
so,findT‘1<l<x2>thereA= 1 2 1
X3
OR

-1 1 O
Let T;: R? - R? and T,: R? - R? be the linear operators given by the formula
T,(x,y) =(x+y,x—y)and T,(x,y) = 2x + y,x — 2y)
(1) Show that T, and T, are one to one.
(i) Find the formula for T, (x,y) and T, * (x,y) and (T,°T,) "1 (x, y)

If T:R? — R3 be the linear transformation defined by
X2

T ([(2)])=[—5x1 + 13x2]

_7x1 + 16x2

Find the matrix of the transformation T with respect to the bases B = {u,, u,}
for R? and B’ = {v,, v,, v5} for R3, where

1 -1 0
2 llvz=11
2 2

3 5
U = [1]*”2 = [2]"’1 = [ 0 [v,=
Find the eigen values and eigen vectors the following matrix A.

-1

4 6 6
A=11 3 2
-1 -4 -3
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Let T:R*—> R3 be the linear transfomration given by the formula
T(xq,x0,X3,%4)=(4%1 + X5 — 2X3 — 3X4, 2% + X5 + x5 — 4x,,6x; — 9x3 +
9x4)

(1) Find a basis for ker(T).

(2) Find a basis for R(T).
Verify cayley-Hamiton theorem for the following matrix and hence, find A1,

2 -1 1
A=|-1 2 —1]
1 -1 2

Find an orthogonal matrix P that diagonalizes

4 2 2
A=12 4 2
2 2 4

The vector space R3® with the Euclidean inner product. Apply the Gram-
Schmidt process to transform the basis vectros
u, =(1,1,1),u, =(0,1,1), u3=1(0,0,1) into an orthogonal basis
{v1,v,, Vs}-
OR

Define diagonalize of matrix A. Prove that if A is an n X n matrix, then the
following are quivalent.

(1) A is diagonalizable.

(2) A has a linearly independent eigenvectors.
Let T be the linear operator on R3 which is represented in the standard ordered
basis by the matrix

5 -6 -6
A=|-1 4 2]. Find the minimal polynomial for T
3 -6 —4

Define the following terms :

Orthogonal matrix

Proper and improper orthogonal matrix
Unitary matrix

Irreducible polynomial

Annihilating polynomial

Minimum polynomial

ocoukrwhE

Find the Jordan forms of
0 1 2
0 0 0

A=|1 Yandp =
[1 1]an 00 0

OR
Solve the following system by Gauss-Jordan elimination method:
xl +x2 +ZX3 = 8, —x1 - 2x2+ 3x3 = 1,3x1 _7x2 +4x3 = 10

Find a basis for the row and column spaces of

1 4 5 2

2 1 3 O]
3 2

-1 2

A=

*khkhkkhkkhhhkhkkkkkk
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