Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER I (NEW) - • EXAMINATION - SUMMER 2016

Subject Code: 2711103

Date:18/05/2016

Subject Name: ADVANCED FLUID MECHANICS

Time:02:30 pm to 05:00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

	3. 4.	Figures to the right indicate full marks. Use of Gas Table is permitted.	
Q.1	(a)	Define following terms: Vorticity, Circulation, Velocity potential function and stream function, Irrotational flow, Internal stresses of fluid, Real fluid.	07
	(b)	Derive Navier – Stokes Equation and also give its exact solutions.	07
Q.2	(a) (b)	Derive continuity equation for three dimensional fluid flows. Derive Euler's equation of motion with usual notations. OR	07 07
	(b)	Explain principle of Superposition with suitable example. Also mention its application.	07
Q.3	(a) (b)	Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 25kW of useful mechanical power to the water. The free surface of the upper reservoir is 50 m higher than the surface of the lower reservoir. If the flow rate of the water is measured to be 0.03 m ³ /s. Determine irreversible head loss of the system and the lost mechanical power during this process. Explain hydrodynamic theory of lubrication for low Reynold's number.	07 07
		OR	
Q.3	(a) (b)	A volcano has erupted , spewing stones, steam and ash several thousand feet in to the atmosphere. After some time the particles begin to settle to the ground. Consider a nearly spherical ash particle of diameter 55μ m, falling in air whose temperature is -50°C and whose pressure is 50 kPa. The density of the particle is 1300 kg/m ³ . Estimate the terminal velocity of this particle at this altitude. Take density as 0.8588 kg/m ³ & μ =1.474*10 ⁻⁵ kg/m.s. Explain exact solution to laminar boundary layer flow over a flat plate without	07 07
Q .4	(a)	pressure gradient. Show that a circle in ξ – plane displaced from the origin is mapped to an	07
C		aerofoil in the physical z-plane via the Joukowski transformation. Also determine the magnitude of circulation required to satisfy the Kutta condition.	
	(b)	What do you mean by transition to turbulence? List the factors affecting the transition and suggest its control.	07
Q.4	(a)	Derive the equation showing the Rayleigh line. Draw Rayleigh lines on the h-s and p-v diagrams for atleast two different values of the mass flux.	07
	(b)	Describe compressible flow through convergent-divergent nozzle. How the shock wave occurs in the nozzle? Explain with figure.	07
Q.5	(a) (b)	Derive Rankine - Hugoniot equation for normal shock wave. What is chocking in isentropic flow for Nozzle? Give the applications of isentropic flow.	07 07
Q.5	(a)	OR Draw and labeled the airfoil and define following terms: camber, angle of	07
~	(4)	attack, axial chord length, aspect ratio.	

(b) Show that the upper and lower branches of a Fanno curve represent subsonic and supersonic flows respectively. Also prove that at the maximum entropy point Mach number is unity and all processes approach this point.

07