GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER I (NEW) – • EXAMINATION – SUMMER 2016

Date:18/05/2016 Subject Code: 2712704 **Subject Name: First Course in Optimization Techniques** Time:02:30 pm to 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 04 **Q.1** (a) (i) Find the maxima or minima, if any, of the function $f(x) = -(x-1)^3(x+1)^2$. (ii) Find the critical points of the function $f(x, y) = x^2 y^2 - 5x^2 - 8xy - 5y^2.$ 03 (b) Two towns are to get their water supply from a river. Both towns are 07 on the same side of the river at a distance of 6 km and 18 km from the river bank. If the distance between the points on the river bank nearest to the towns respectively be 10 km, find (i) where a single pumping station may be located to require the least amount of pipe, (ii) how much pipe is needed. 0.2 (a) Define a convex function. How will you check that a function is 07 convex or not? Check whether the function $f(x_1, x_2) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$ is convex. **(b)** Minimize $f = -x_1 + x_2 - 3x_3$ 07 subject to $x_1 + x_2 + x_3 \le 10$, $2x_1 - x_3 \le 2,$ $2x_1 - 2x_2 + 3x_3 \le 0,$ $x_i \ge 0, i = 1, 2, 3$ by Simplex method. OR (b) Find the solution of the following LP problem graphically: 07 Minimize $f = -x_1 + 2x_2$ subject to $-x_1 + 3x_2 \le 10$, $x_1 + x_2 \le 6,$ $x_1 - x_2 \le 2,$ $x_1 \ge 0, \qquad x_2 \ge 0.$ (a) Use Dichotomous Search Method to find the minimum of **Q.3** 07 $f(\lambda) = \frac{\lambda}{2} + \frac{2}{\lambda}$ in the interval (0.00, 3.00) to within 10% of the exact value. Take $\delta =$ 0.001. (b) Use Quasi-Newton Method to minimize the function 07 $f(\lambda) = \lambda \sqrt{4 - \lambda^2}.$ Take $\lambda_1 = 1.6$, the step size $\Delta \lambda = 0.01$ and $\varepsilon = 0.01$. Perform only two iterations. OR

Q.3 (a) Use Fibonacci Method with n = 6 to minimize the function

$$f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65 \,\lambda \, tan^{-1} \frac{1}{\lambda}$$

in the interval [0, 3].

- (b) Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ with the starting 07 point $X_1 = [0 \ 0]^T$ using Powell's method.
- Q.4 (a) Explain the terms: Design vector, side constraint, behavior constraint, 07 Integer Programming problem
 - (b) Define gradient of a function. How gradient is useful in optimization? 07 Write Cauchy's steepest descent algorithm.

OR

Q.4	(a)	Use Interval Halving Method to minimize the function	07
		$f(\lambda) = \lambda^5 - 5\lambda^4$	
		with $n = 7$ in the interval (2, 5).	
	(b)	Write the general form of an optimization problem. Write some	07

(b) Write the general form of an optimization problem. Write some 07 applications of optimization problem. Explain one application in detail.

ÔR

Q.5(a) Write the algorithm of Random Walk method.07(b) Write the algorithm of sequential linear programming.07

07