Seat No.: Enrolment No GUJARAT TECHNOLOGICAL UNIVERSITY			
ME – SEMESTER I (NEW) – • EXAMINATION – SUMMER 2016 Subject Code: 2712904 Date:18/05/2016 Subject Name: Control System Theory			
Time:	Time: 02:30 pm to 05:00 pm Total Marks: 70		
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1		Explain Infinite Time Regulator Problem in detail. Explain the State Regulator Problem in detail.	07 07
Q.2	(a)	Determine the transfer function for the following Matrix: $A = \begin{bmatrix} -3 & 1 \\ 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \end{bmatrix}, D = 0.$	07
	(b)	Explain Preliminary Design consideration in time & frequency domain based on Root Locus.	07
	(b)	OR Explain the implementation of Digital PI Controller.	07
Q.3		Find state space representation of DC motor. Diagonalize the following matrix A given below: $A = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix}$	07 07
Q.3	(a) (b)	OR Explain Jury Stability Criterion in detail. The Transfer function of a control system is given by $\frac{Y(s)}{U(s)} = \frac{(S+2.5)}{s^2+1.5 \ s-2.5}$ Determine whether the system is completely controllable or not?	07 07
Q.4	(a)	Construct the state model for a system characterized by the differential equation, $\frac{d^3y}{dt^3} + 10\frac{d^2y}{dt^2} + 17\frac{dy}{dt} + 9y = u$	07
	(b)	Design sliding mode controller so that close loop system falls upon sliding line $\begin{bmatrix} \dot{x1} \\ \dot{x2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x1 \\ x2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \& F = \begin{bmatrix} 1 & 0 \end{bmatrix} x$	07
Q.4	(a) (b)	OR Explain Liapunov based stability analysis for Non-linear Systems. Explain variable structure control with it's application.	07 07
Q.5	(a) (b)	Explain lead-lag compensation based on Root locus approach. Discuss the effect of load disturbance on control system with suitable Example.	07 07
Q.5	(a) (b)	OR Write a brief note on optimal control system. Explain non-homogeneous state equations in time-domain.	07 07
	(~)		51
