GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER I (NEW) – • EXAMINATION – SUMMER 2016

ME – SEMESTER I (NEW) – • EXAMINATION – SUMMER 2016							
Subject Code: 2713007			Date: 16/05/201			16	
Su	bject	Name: Numerical Methods	ls and Statistical Analysis for Chemical Engineering				
	-	2:30 pm to 05:00 pm	-			Iarks: 70	
Instructions:							
	1	Attempt all questions.					
	2			ecessary.			
	3	Figures to the right indicate for	ull marks.				
Q.1	(a)	Explain the following terms w	ith examp	ples:		08	
		a) Probability distribution	ı				
		b) Sampling distribution					
		c) True Percentage Relat	ive Error				
		d) Approximate Percenta		ve Frror			
	(L)	, II	C			06	
	(b)	Explain method of false position algebraic equations using it.	and write	e algorithm ic	or solution of non-linear	06	
0.2	(a)		nont data	in compared	averagimentally. Develop the	07	
Q.2	(a)	For heat capacity of a compo- linear regression expression for		-		07	
	(b)	Fit the data point to linear relationship and estimate the error at $x = 25$.				07	
	(~)		-			0.	
		-	$\frac{x}{5}$	<u>y</u>			
			5 10	0.530 0.716			
			10 15	0.710			
			20	0.869			
			25	0.943			
			30	1.013			
			35	1.096			
		_	40	1.160			

OR

	(b)	Explain the Lagrangian interpolation formula.				
Q.3	(a)	Use composite trapezoidal rule with $\Delta x = 0.1$ to evaluate integration of x^2 in the range 1 to 2. Compare your results with the analytical value.				
	(b)	Estimate $\frac{d^2 y}{dt^2}$ numerically at $t = 1.5$.				07
			t	У		
			0	0		
			0.5	1.1875		
			1	5.0000		
			1.5	18.175		
			2.0	52.0000		

249.0000 OR

122.1875

Q.3 (a) Derive working equations for the method of cubic spline approximation to a 07 function.

2.5

3.0

(b) Consider the set of under given five data points and fit a third degree polynomial. 07 Check if your polynomial replicates your data points.

-
P(bar)
0.04267
0.21525
2.01571
17.682
47.000

- Q.4 (a) Explain the Gauss Seidel method for solution of simultaneous linear equations 07 and highlight its strengths and limitations.
 - (b) Explain ODE with Initial Value Problems (IVP) and explain any one method to 07 solve them with example.

OR

Q.4 (a

Q.5

(a) Solve $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

	OR					
(b)	Discuss importance of matrix inversion for solution of linear algebraic equations					
(a)	Differentiate Parabolic, Hyperbolic and Elliptic PDEs with examples.					
(b)	Explain ODE with Boundary Value Problems (BVP) and explain any one method to solve them with example.	07				
(b)	Evaluin ODE with Doundary Value Droblems (DVD) and evaluin any one	07				

- Q.5 (a) Explain role of random variables for Stochastic Processes with example. 06
 - (b) Explain the finite difference method with example for solution of PDEs. 08

07