Seat N	lo.:	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER I (NEW) – • EXAMINATION – SUMMER 2016	
Subje	ect C	ode: 2714104 Date:19/05/2016	
Subject Name: Digital Image Processing Time: 02:30 pm to 05:00 pm		30 pm to 05:00 pm Total Marks: 70	
Instruc	1. A 2. N	ttempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain histogram matching with necessary equations. Given an image of size 3 x 3 as $f(m,n)$ as below. Find the output image $g(m,n)$ using logarithmic transformation $g(m,n)=c\log_{10}\left(1+f(m,n)\right)$, by choosing c as 1) $c=1$ and 2) $c=L/(\log_{10}\left(1+L\right))$. Take $L=255$. Round the $g(m,n)$ to a number to the next larger integer.	07 07
		f(m,n) = [128 212 255; 54 62 124; 140 152 156]	
Q.2	(a) (b)	Define 2-D DFT and IDFT. List all properties of 2-D DFT. Explain image sharpening using frequency domain filters. OR	07 07
	(b)	Explain image smoothing using frequency domain filters.	07
Q.3	(a) (b)	Discuss the noise models in the image in details. Prove that a 3 x 3 mean filter in the frequency domain which behaves like a low pass filter.	07 07
Q.3	(a)	OR Filter the following image, $f(m,n)$, using a 3 x 3 neighborhood averaging by assuming the pixel replication.	07
		f(m,n) = [1 2 3 2; 4 2 5 1; 1 2 6 3; 2 6 4 7]	
	(b)	Discuss restoration in the presence of noise by spatial filtering.	07
Q.4	(a)	Show that a linear, spatially invariant degradation system with additive noise can be modeled in the spatial domain as the convolution of the degradation function with an image followed by the addition of noise.	07
	(b)	Explain Wiener Filtering with its significance	07
Q.4	(a) (b)	Write short note on canny edge detection algorithm Explain Morphological operators.	07 07
Q.5	(a) (b)	Write short on gray-scale morphology Explain segmentation using morphological watersheds OR	07 07
Q.5	(a) (b)	Write short note on digital watermarking List the image processing applications and explain object recognition.	07 07
