
GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 201

GUJAKAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016			
Subject Code: 2720801 Date: 25/05			16
Subject Name: Finite Element Methods			
Time: 10:30 am to 01:00 pmTotal Marks: 70			
Instructions: 1. Attempt all questions.			
	2.	Make suitable assumptions wherever necessary.	
	5.	Figures to the right indicate full marks.	
Q.1	(a)	1. Enlist properties of the global stiffness matrix.	03
	(b)	2. Enlist and explain non-linearities.For the truss shown in Fig. 1, determine nodal displacements. For elements 1	04 07
	(U)	and 2, A = 6 x 10^{-4} m ² , and for element 3 A = $6\sqrt{2}$ x 10^{-4} m ² . Take E = 210 GPa.	07
Q.2	(a)	Explain step by step procedure to solve an eigenvalue problem using Jacobi method.	06
	(b)	Consider a simply supported beam under uniformly distributed load. The	08
		governing differential equation is given as follows, where, v is the transverse displacement of the beam and q_o is the uniformly distributed load.	
		$EI\frac{d^4v}{dx^4} - q_0 = 0$. Use boundary conditions $v(0) = 0$, $\frac{d^2v}{dx^2}(0) = 0$, $\frac{d^2v}{dx^2}(L) = 0$,	
		and $v(L) = 0$.	
	(b)	OR Derive the equation of stiffness matrix of a truss element.	07
Q.3	(a)	Determine nodal displacement and stresses in each elements for the bar	06
X.C	(4)	assemblage in the Fig. 2.	00
	(b)	Draw the shape functions for a CST element and for a LST element. Also derive	08
		the strain-displacement matrix for a CST element. OR	
Q.3	(a)	Explain following terms: (1) Subparametric formulation (2) Superparametric	06
		formulation (3) Isoparametric formulation (4) Mass lumping.	
	(b)	Derive Jacobian of Q4 element and tetrahedral element.	08
Q.4	(a)	1. Discuss the effect of mesh node numbering.	03
		2. Differentiate between Kirchoff plate and Mindlin plate elements in terms of	03
	(b)	their capabilities and limitations. Explain step by step procedure to solve an eigenvalue problem using vector iteration	08
	(0)	method.	00
0.4		OR	0.4
Q.4	(a)	1. What is hourglass phenomenon? Discuss the effect of integration scheme on the same.	04
		2. Draw the shape functions for a CST element and for a LST element.	03
	(b)	Derive the stiffness matrix of a 3 noded 1-D bar element.	07
Q.5	(a)	A composite wall consists of 3 materials with thermal conductivities $k_1 = 70$	06
		W/mK, $k_2 = 40$ W/mK and $k_3 = 20$ W/mK respectively. Thickness of inside wall	
		is 20 mm is at 200 °C. Outside wall is 40 mm thick and is exposed to air with 50 °C with convection coefficient of 10 Wm ² K. The intermediate wall is 25 mm	
		thick. Determine the temperature distribution across the wall.	
	(b)	Consider a beam element as shown in Fig. 3. Determine displacement of nodes.	08
		OR	

- Q.5 (a) A metallic fin with an insulated tip is 1 mm thick and 100 mm long, extends from 06 a wall whose temperature is 235 °C. The fin has thermal conductivity of 360 W/m°C. Determine temperature distribution and amount of heat transferred from fin to the air at 20 °C and $h = 9 \text{ W} / \text{m}^2 \text{ °C}$. Assume fin width to be 1m and use three elements.
 - (b) Consider a beam element as shown in Fig. 4. Determine displacement of nodes. 08
