Enrolment No.\_\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY** ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016

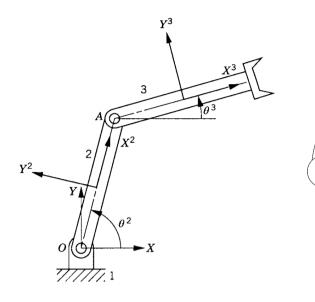
Subject Code: 2720820

Subject Name: MULTIBODY DYNAMICS

## Date: 31/05/2016

**Total Marks: 70** 

## Time:10:30 am to 01:00 pm


Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

| Q.1 | (a)         | Explain following terms with suitable illustration:: (1) Holonomic Constraints (2) Non-Holonomic Constraints                                                                                                                                                                                                            | 06 |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | (b)         | Derive the algebraic kinematic constraint equations of the three-body system shown in Fig. 1, and determine the number of the system degrees of freedom.                                                                                                                                                                | 08 |
| Q.2 | (a)         | A point mass attached to a massless rod and hanging from a revolute joint, called a simple pendulum is illustrated in Fig. 2. A local coordinate frame B is attached to the pendulum that rotates in a global frame G. Derive the position vector, velocity vector and acceleration vector of the mass in global frame. | 08 |
|     | (b)         | Explain formulation of joint constraints for the following joint configurations: (1) Ground (2) Prismatic (3) Revolute                                                                                                                                                                                                  | 06 |
|     |             | OR                                                                                                                                                                                                                                                                                                                      |    |
|     | (b)         | With a suitable example differentiate between quasi-static and kineto-static systems.                                                                                                                                                                                                                                   | 06 |
| Q.3 | (a)         | For the system shown in Fig 1, determine the Jacobian matrix.                                                                                                                                                                                                                                                           | 09 |
|     | (b)         | Explain the significance coordinate partitioning.                                                                                                                                                                                                                                                                       | 05 |
|     | (U)         |                                                                                                                                                                                                                                                                                                                         | 05 |
| ~ 1 |             | OR                                                                                                                                                                                                                                                                                                                      | 00 |
| Q.3 | (a)         | From the Rodriguez formula, derive matrices for the rotation in XY plane, YZ plane and XZ plane.                                                                                                                                                                                                                        | 08 |
|     | <b>(b)</b>  | Write Newton-Euler equations for a four bar mechanism when coupler is subjected to external force.                                                                                                                                                                                                                      | 06 |
| Q.4 | (a)         | Derive the Rodriguez formula in terms of Euler parameters.                                                                                                                                                                                                                                                              | 08 |
|     | (b)         | Fig. 3 shows a particle of mass m that slides freely in the $X_1X_2$ plane on a                                                                                                                                                                                                                                         | 06 |
|     | (0)         | slender massless rod that rotates about the $X_3$ axis. Derive the differential equations of motion of the system using Lagrange's equation.<br><b>OR</b>                                                                                                                                                               | 00 |
| Q.4 | (a)         | Explain the principle of virtual work and illustrate its application in defining connectivity conditions.                                                                                                                                                                                                               | 07 |
|     | <b>(b)</b>  | Illustrate Lagrange's multiplier method for deriving equation of motion.                                                                                                                                                                                                                                                | 07 |
| 05  | (a)         | Derive the equation of element stiffness matrix of a beam element neglecting                                                                                                                                                                                                                                            | 08 |
| Q.5 |             | shear deformation.                                                                                                                                                                                                                                                                                                      |    |
|     | <b>(b</b> ) | Discuss the factors affecting stability and accuracy of the solution                                                                                                                                                                                                                                                    | 06 |
|     |             | OR                                                                                                                                                                                                                                                                                                                      |    |
| Q.5 | (a)         | Find the generalized reaction forces associated with the Cartesian coordinates of two bodies connected by a revolute joint in terms of Lagrange multipliers.                                                                                                                                                            | 07 |

(b) Prove that the absolute acceleration of an arbitrary point on the rigid body can 07 be given as:

 $\ddot{r}^{i} = \ddot{R}^{i} + \omega^{i} \times (\omega^{i} \times u^{i}) + \alpha^{i} \times u^{i}$ 



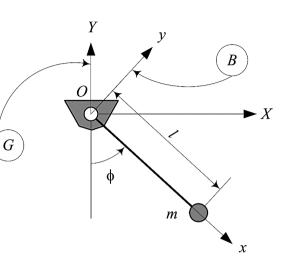
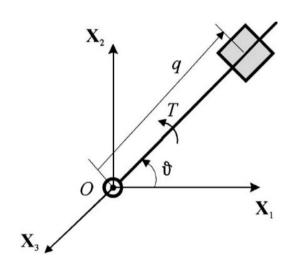




Fig. 2

Fig. 1





\*\*\*\*\*