Sea	ıt No.:	Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
C	hiaat	ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016 Code: 2720910 Date: 24/05/201	1.6
	•		10
	•	Name: Advanced Mechanism Design 0:30 am to 01:00 pm Total Marks:	70
	tructio	<u>-</u>	70
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	A four bar mechanism is to be designed by using three precision points to generate the function $y = x^{1.5}$ for a range $1 \le x \le 4$. Assuming the input and output link angles in the range of $30^0 \le \theta \le 120^0$ and $90^0 \le \Phi \le 180^0$ respectively. Determine the three precision potions and angles of the input and out links.	07
	(b)	Using the results of the Q.1 (a), determine the proportions of 4-bar mechanism by using three precision points. Take length of the fixed link as 25 mm.	07
Q.2	(a)	Give the classification of the synthesis problems with suitable example.	07
	(b)	Do the acceleration analyses of a four bar mechanism using analytical approach with suitable example. OR	07
	(b)	Do the acceleration analyses of a slider crank mechanism using analytical	07
	(6)	approach with suitable example.	07
Q.3	(a)	Explain the point position reduction method of linkages.	07
	(b)	Explain center point and circle point circles.	07
		OR	
Q.3	(a)	Design a four bar linkages which will move a line on its coupler link such that a point P on that line will be first at P_1 and later at P_2 and will also rotate the line through an angle α_2 between those two precision positions. Find the lengths and angles of four links and coupler link dimensions. Further assume that all angular measurements are known.	07
0.4	(b)	Explain the concept of fixed and moving centrodes along with their properties.	07
Q.4	(a)	Discuss the Hartmann construction.	07
	(b)	Derive the Euler-Savary equation. OR	07
Q.4	(a)	Explain Hain method.	07
~ ··	(b)	Explain Robert-Calyley diagram.	07
Q.5	(a)	Discuss the graphical design procedure of a four bar Grashof crank rocker to give 45° of rocker rotation with equal time forward and backward from a constant speed motor input.	07
	(b)	Discuss the methodology of designing a 4-bar linkage to move output link from position 1 to position 2 by taking suitable positions.	07

(a) Discuss D-H parameters with suitable example.(b) Explain Euler angle representation in a frame.

Q.5

07 07