GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016					
Sul	biect	Code: 2721314 Date: 31/05/24	016		
	•	Name: Decision Models in Management	020		
	•):30 am to 01:00 pm Total Marks	: 70		
	ruction	ns:			
	1.	1 1			
	2. 3.	i v			
	5.				
Q.1	(a)	Explain: Operation Research, Optimal Solution, Unbounded Solution.	07		
	(b)	Solve the following LP problem graphically. Maximize $7 - 7x + 6x$	07		
		Maximize $Z = 7x_1 + 6x_2$ Subject to, $2x_1 + 3x_2 \le 19$,			
		$3x_1 + x_2 \le 11,$			
		$6x_1 - 2x_2 \ge 2,$			
		$\mathbf{x}_1,\mathbf{x}_2\geq 0.$			
Q.2	(a)	Explain: Basic variable, Slack variable, Surplus variable.	07		
-	(b)	Solve the following LP problem by Simplex method.	07		
		Maximize $Z = 10x_1 + 7x_2$			
		Subject to, $4x_1 + x_2 \leq 22$,			
		$ \begin{array}{l} 6x_1 - 3x_2 \leq 6, \\ x_1, x_2 \geq 0. \end{array} $			
		$A_1, A_2 = 0.$ OR			
	(b)	Write the dual of following primal LPP, and solve dual by Simplex method.	07		
		$Minimize G = 52y_1 + 53y_2$			
		Subject to, $3y_1 + 2y_2 \ge 5$,			
		$\begin{array}{l} 2y_1+5y_2 \geq 8, \ y_1, y_2 \geq 0. \end{array}$			
Q.3	(a)	Discuss briefly the Kuhn-Tucker conditions for Non-linear optimization.	05		
	(b)	Solve the following problem using Kuhn Tucker conditions Minimize $Z = (X_1 - 4)^2 + (X_2 - 4)^2$	09		
		Subject to			
		$X_1 + X_2 \le 4,$			
		$X_1 + 3X_2 \le 9,$			
		$X_1 \text{ and } X_2 \ge 0$			
03	(a)	OR Explain general structure of a queuing system; arrival process, service system,	05		
Q.3	(a)	and queue structure.	05		
	(b)	A toll plaza has 4 toll booths, each of them serves on an average 1.5	09		
		vehicle/min (the service time being distributed exponentially). The arrival rate			
		of vehicles to the toll plaza is 4 vehicles/min (follow Poisson distribution). \hat{a}			
		Compute			
		(a) The probability that all the booths would be idle(b) The probability that there shall be 6 vehicles in the toll plaza			
		(c) The average number of the vehicles waiting in a queue			
		(d) The average number of the vehicles being serviced			

- (e) The average time a vehicle spends waiting for service(f) The average time a vehicle spends in the toll plaza.

- What is 'Transportation Problem'? Describe the North-west corner method for Q.4 **(a)** 05 finding initial feasible solution of Transportation problem.
 - Solve the following transportation problem. Cell values are in Rs. Find initial **(b)** 09 feasible solution by Vogel's Approximation method and test the optimality by MODI method.

From	То			Supply	
	D	Е	F		
А	7	5	2	70	
В	4	8	6	40	
С	9	4	3	50	
Demand	30	90	40		
OP					

OR

- Describe briefly 'Simulation' and its applications. Q.4 **(a)**
 - Solve the following assignment problem for minimum cost using Hungarian **(b)** 07 Assignment Method

	А	В	С	D
1	54	41	52	64
2	65	53	63	55
3	48	61	46	67
4	44	59	61	58

Q.5	(a)	(a) Describe briefly 'Minimum spanning tree problem'.		
	(b)	Define 'Dynamic programming problem'. State its application areas.	07	
		OR		
Q.5	(a)	Write any one algorithm to solve Shortest Path problem.	07	
	(b)	Explain Integer programming problem with example.	07	

Explain Integer programming problem with example. (b)

07