Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016

Subject Code: 2721602 Subject Name: Chemical Process Optimization

Time:10:30 am to 01:00 pm Instructions:

Total Marks: 70

Date: 24/05/2016

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the concept of optimization and give examples of application of optimization 07 in chemical industries.
 - (b) A length of wire is to cut in two parts. One portion is to be bent into the form of a circle, and the other into the form of a square. Determine the ratio in which the wire must be cut, so that the sum of the areas enclosed by the circle and square is the least.
- Q.2 (a) Minimize the function $f = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ using Simplex method. Take 10 the points defining the initial Simplex as $X_1 = [4,4]$, $X_2 = [5,4]$ and $X_3 = [4,5]$. Assume = 1, = 0.5 and = 2.
 - (b) Write short note on scanning and bracketing techniques in optimization. 04
 - (b) Find the values of x and z (both > 0) analytically that maximize the function: $Y = -x^2 + 10x + xz \text{ ó } z^2 + 7z + 2$ 04
- Q.3 (a) The total annual cost (\$) of operating a pump and motor C in a particular piece of 07 equipment is a function of x, the size (horsepower) of the motor, namely C = 300 + x + 4000/xFind the motor size that minimizes the total annual cost.

Use Newtonøs method. Take an initial guess at x = 10. How many iterations it took to converge? Solve the equation analytically and determine actual solution. State the advantages and disadvantages of Newtonøs method.

(b) For a two-stage adiabatic compressor where the gas is cooled to the inlet gas 07 temperature between stages, the theoretical work is given by:

$$W = \frac{kp_1V_1}{k-1} \left[\left(\frac{p_2}{p_1}\right)^{(k-1)/k} - 2 + \left(\frac{p_3}{p_2}\right)^{(k-1)/k} \right]$$

where, $k = C_P/C_V$, p_1 = inlet pressure, p_2 = intermediate stage pressure, p_3 = outlet pressure, V_I = inlet volume. We wish to optimize the intermediate pressure p_2 so that the work is a minimum. Show that if $p_1 = 1$ atm and $p_3 = 4$ atm, optimum $p_2 = 2$ atm.

- **Q.3** (a) Minimize the function $f = 4x_1^2 + 3x_2^2 5x_1x_2$ ó $8x_1$ using Powelløs method. Take **08** starting point [0,0].
 - (b) Minimize the function $f = 4x_1^2 + x_2^2 2x_1x_2$ starting from [1,1] using Newtonøs 06 method.
- Q.4 (a) Determine the process of finding the optimum L/D ratio of a cylindrical storage vessel. Compare the result with design thumb rule of 3. State the assumptions clearly.
 (b) Find the dual of the following LPP: 04
 - (b) Find the dual of the following LPP: Minimize $Z = 11x_1 + 12x_2$

subject to:

 $\begin{array}{c} 2x_1 + 3x_2 ~ \ddot{O}12 \\ 5x_1 + 4x_2 \times 20 \\ x_1 + 5x_2 ~ \ddot{O}15 \\ 3x_1 - x_2 \times 10 \\ x_1 \, , \, x_2 \times 0 \end{array}$

OR

Q.4	(a)	Solve the following Linear Programming problem using Simplex method	10
		Maximize $Z = x_1 + 2x_2 + x_3$	
		subject to:	
		$2x_1 + x_2 - x_3 \ddot{O}2$	
		$-2x_1 + x_2 - 5x_3 \times -6$	
		$4x_1 + x_2 + x_3 \ddot{O}6$	
		$x_1, x_2, x_3 imes 0$	
	(b)	Write a short note on Box complex method.	04
Q.5	(a)	Explain particle swarm optimization technique in detail.	07
	(b)	Find the dimensions of a cylindrical closed vessel made up of sheet metal to maximize its volume such that the total surface area is 24. Use Lagrangeøs multiplier technique to solve the problem.	07
		OR	
Q.5	(a)	Explain multi objective optimization and its application in chemical engineering.	07

07

(b) Minimize $f = -4x_1 + x_1^2 + 2x_2^2 - 2x_1x_2$ subject to:

 $j \in \mathcal{U}$

 $\begin{array}{l} 2x_1 + x_2 ~ \ddot{O}6 \\ x_1 - 4x_2 ~ \ddot{O}0 \\ x_1 ~ , ~ x_2 \times 0 \end{array}$

Formulate the problem to solve by quadratic programming technique.