Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016

Subject Code: 2724003

Date: 24/05/2016

Subject Name: Optimization in Rubber Industries	
Time: 10:30 am to 01:00 pm	Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain following terms in context to optimization with example: feasible 08 region, multimodal function, derivative discontinuity, discreet variable.
 - (b) We want to apply the region elimination search techniques to reduce the interval of uncertainty for maximum value of the function $f(x) = 6.44 + 1.2x x^2$ from [0,1] to less than 2 percent of its original size. Compare all region elimination methods for above case.
- Q.2 (a) Discuss Necessary and sufficient conditions for an extremum of an unconstrained 07 single variable function.
 - (b) Explain the concept and working of Genetic Algorithm for optimization 07

OR

- (b) A length of wire is to cut in two parts. One portion is to be bent into the form of a circle, and the other into the form of a square. In what ratio must the wire be cut if the sum of the areas enclosed by the circle and square is to the least possible?
- Q.3 (a) Search for an minimum value of discreet function f(x) using following data:

Х	f	Х	f	Х	f	Х	
2	141	8.1	155	11	62	20	1
2.2	142	8.2	96	12	64	25	(
3	143	8.5	87	13	74.5	25.5	(
5	145	8.8	78	14	75	26	(
6	150	9.1	69	15	78	26,2	(
7	153	9.9	60	16	80	26.3	(
8	154	10.1	51	16.5	83	26.6	1

(b) Explain the method of Successive Quadratic Estimation to minimize $c(x) = 2 + \frac{16}{16}$

$$f(x)=2x^2+\frac{10}{x}.$$

OR

Q.3	(a)	Explain the Khachiyangs method for solving Linear Programming.	07

- (b) Explain the basics of Multi objective optimization (MOO). Discuss 07 applications of MOO.
- Q.4 (a) Using the Rosenbrock search technique, seek the minimum of the objective function 07 $y = 6x_1^2 + x_2^2$ using $s_1 = s_2 = 1$, $\beta = 1/2$ and $\alpha = 3$. Carry out two iterations.

07

07

OR

Q.4 Define a suitable search region and a feasible initial base point for the complex method of search in minimizing $y = 5x_1^3 - 3x_1^2x_2 + x_2^2$ subject to the restrictions that

$$3 + 2x_1 - 3x_2 \le 0$$
$$(x_1 - 1)^2 + (x_2 - 2)^2 \le 4$$

Setup a complex method of search and carryout six cycles of search.

 $y = x_1^2 + x_2^2 + 4x_3^2 + x_4^2$

Carry out four cycles of vertex rejection and regeneration.

(b) Find the location and determine the nature of the stationary values of the 07 unrestricted function $y = x^4 - 8x^3 + 24x^2 - 32x + 16$

OR

- Q.5 (a) List out different steps in GA and discuss role of fitness selection and survival 07 selection.
 - (b) Explain successive quadratic programming for multi variable optimization 07 with example.
