GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER II (NEW) – • EXAMINATION – SUMMER 2016

Subject Code: 2724712

Subject Name: Optimization Theory and Practice

Jale: 02/00/2010

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Two types of printed circuit boards A and B are produced in a computer 07 manufacturing company. The component placement time, soldering time and inspection time required in producing each unit of A and B are given below:

	Time Required per Unit (min) for		
Circuit Board	Component Placement	Soldering	Inspection
А	16	10	4
В	10	12	8

If the amounts of time available per day for component placement, soldering and inspection are 1500, 1000 and 500 person-minutes, respectively, determine the number of units of A and B to be produced for maximizing the production by Simplex Method.

(b) Write the Simulated Annealing algorithm. Also draw its flow chart. How 07 it differs from Genetic Algorithm?

Q.2 (a) Use Powell's method to minimize the function
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 07

starting from the point
$$X_1 = \begin{cases} 0 \\ 0 \end{cases}$$
. Take $\varepsilon = 0.01$.

(b) Minimize $F = 2x_1 + 2x_2$ subject to

$$\begin{array}{ll} x_1 + 2x_2 \ge 1, & 2x_1 + x_2 \ge 1 \\ x_1 \ge 0, & x_2 \ge 0 \end{array}$$

by Dual Simplex Method.

OR

(b) Use Graphical Method to solve the following problem: Minimize f = x + 3ysubject to f = x + 2y

$$-4x + 3y \le 12$$
, $x + y \le 7$, $x - 4y \le 2$,
x and y are unrestricted in sign.

Use Kuhn-Tucker conditions to check whether $X = [2,3]^T$ is a local minimum.

07

Date: 02/06/2016

Total Marks: 70

(ii) Find the extreme points of the function

$$f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6.$$

Q.3 (a) (i) In a submarine telegraph cable, the speed of signaling varies as
 $x^2 log(1/x)$, where x if the ratio of the core to that of the
covering. Find x which maximizes the speed.
(ii) Explain the terms: side constraint, behavioral constraint
04
05
07
08
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

- (ii) Explain the terms: side constraint, behavioral constraint, geometric programming problem, constraint surface
- (b) (i) Determine whether the following matrix is positive definite, negative definite or indefinite by evaluating the signs of its submatrices:

$$A = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ -1 & -1 & 5 \end{bmatrix}$$

- (ii) Use Lagrange's multiplier method to find the critical points of the function $f(x, y, z) = x^2 + y^2 + z^2$ given that $z^2 = xy + 1$.
- Q.4 (a) Find the minimum of f(x) = x(x 1.5) in the interval (0.0, 1.00) to 07 within 10 % of the exact value using Dichotomous Search Method.
 - (b) Find the minimum of the function

$$f(\lambda) = 0.65 - \frac{0.75}{1+\lambda^2} - 0.65\lambda tan^{-1} \left(\frac{1}{\lambda}\right)$$

using the secant method with an initial step size of $t_0 = 0.1$, $\lambda_1 = 0.0$ and $\varepsilon = 0.01$.

OR

- Q.4 (a) Minimize the function $f(x) = x^3 3x$ in the interval (0.0, 2.0) using 07 the Fibonacci Method with n = 6.
 - (b) Find the minimum of the function $f(\lambda) = \lambda^5 5\lambda^3 20\lambda + 5$ using 07 Quasi-Newton Method with the starting point $\lambda_1 = 2.2$ and the step size $\Delta \lambda = 0.01$. Perform three iterations only.
- Q.5 (a) Write the algorithm of Univariate method. Perform only one iteration 07 of Univariate Method to minimize

$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$

with the starting point $X_1 = [0, 0]^T$. Take $\varepsilon = 0.01$.

- (b) In case of Interior Penalty Function Method, answer the following questions:
 - (i) How will you select the initial value of the Penalty Parameter? 02
 - (ii) What is normalization of constraints? What is its importance? **02**
 - (iii) What are the different ways to check the convergence? 03

OR

Q.5 (a) (i) Transform the following constrained problem into an equivalent 03 unconstrained problem:

Minimize
$$f(x_1, x_2) = x_1^2 - x_2^2$$

subject to
$$-1 \le x_1 \le 1$$
, $2 \le x_2 \le 10$.

(ii) Use Newton's method to minimize the function

$$f(x_1, x_2) = 3x_1^2 - 2x_1x_2 + x_2^2 - 2x_1 - 3x_2$$

by taking the starting point as $X_1 = \{ \begin{matrix} 0 \\ 0 \end{pmatrix}$.

(b) Linearize the constraint $3x_1^2 - 2x_1x_2 + 3x_2^2 - 1 \le 0$ at the point $X_1 = 07$ $[-1 \ 1]^T$. Also write Sequential Linear Programming Method algorithm for constrained optimization.

04

03

07