Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

ME – SEMESTER III (NEW) – • EXAMINATION – SUMMER 2016

Subject Code: 2733905

Subject Name: Solar Refrigeration and Air-conditioning

Date:03/05/2016

Time:10:30 am to 01:00 pm

Total Marks: 70

- Instructions:
 - 1. Attempt all questions.
 - 2. Use of solar energy and solar refrigeration data book is permitted after verification.
 - 3. Make suitable assumptions wherever necessary.
- Q.1 (a) Explain in brief the design and performance of solar thermoelectric refrigerator 07 proposed by Vella et al. in 1976.
 - (b) An NH₃ vapour compression refrigerating machine produces 30 tons of ice from and at 0°C in a day. The temperature range of working cycle is 25°C to -15°C. The vapour is dry and saturated at the end of compression. Assuming actual C.O.P. is 60% of theoretical C.O.P. Calculate H.P. required to drive compressor (Use theoretical approach only). Draw the cycle representing the problem. The properties of NH₃ are as follows :

Temperature	Liquid		Vapour	
(^{0}C)	h _f (kcal/Kg)	s _f (kcal/ Kg ⁻ K)	h _g (kcal/Kg)	sg (kcal/ Kg -K)
25	23.91	0.083	315.3	1.072
-15	-13.04	-0.051	311.9	1.209

O.2 (a) A cylindrical parabolic collector is used for heating a Thermic fluid. The 09 concentrator has a following parameter : Aperture = 1.25 m, Length = 3.6 m. Absorber tube : Inner diameter = 3.8 cm, Outer diameter = 4.2 cmConcentric Glass cover : Inner diameter = 5.6 cm, Outer diameter = 6.3 cm Overall loss coefficient = $13.27 \text{ W/m}^2\text{-K}$ Global radiation = 949 W/m², Beam radiation = 705 W/m² Absorbed flux = 483 W/m^2 Tilt factor for beam radiation = 1.014Tilt factor for diffuse radiation = 0.993Mass flow rate of Thermic fluid = 0.099 Kg/secInlet fluid temperature = 150° C, Ambient air temperature = 32° C Heat transfer coefficient = $193 \text{ W/m}^2\text{-K}$ The properties of Thermic fluid are : $C_p = 2.449 \text{ kJ/Kg-K}$ Calculate (1) Concentration Ratio (2) Heat removal factor (3) Useful heat gain rate (4) instantaneous efficiency (5) Exit temperature of Thermic fluid (6) Mean Temperature of absorber plate. (b) Write a short note on thermal chemical storage. 05 OR (b) Write a short note on latent heat storage. 05 (a) Derive an expression of collection efficiency factor and heat removal factor for Q.3 08 flat plate collector. **(b)** Explain the selection criteria of refrigerant for solar operated vapour compression 06 refrigeration system. OR

Q.3 (a) Derive an expression of heat removal factor for cylindrical parabolic collector. 07

(b) Explain with neat sketch Gas compression cycle solar refrigeration system. 07

- Q.4 (a) Explain the thermodynamic modeling of H_2O -LiBr vapour absorption 08 refrigeration system.
 - (b) Discuss the comparative study of open cycle with closed cycle solar absorption 06 refrigeration system.

OR

- Q.4 (a) Explain with neat sketch open cycle solar absorption refrigeration system. 07
 - (b) Explain with neat sketch solar operated absorption air-conditioning with 07 refrigerant storage.
- Q.5 (a) Explain liquid desiccant solar cooling system using triethylene glyol with neat 07 layout.
 - (b) Explain in brief solid desiccant open cycle solar cooling system.

OR

07

- Q.5 (a) Explain in brief working of a zolite-water closed adsorption solar cooling system 07 with neat sketch.
 - (b) Define adsorption. Enlist the various (any four) liquid adsorbent. Discuss the 07 desirable characteristics of liquid absorbents suitable for solar dehumidification.
