GUJARAT TECHNOLOGICAL UNIVERSITY

0016

ME – SEMESTER IV (NEW) – • EXAMINATION – SUMMER 2016			
Su	biect	Code: 2740803 Date:04/05/20	16
Subject Name: Pressure Vessel and Piping System Design			
Time:10:30 am to 01:00 pm Total Marks: 70			
Instructions:			10
1. Attempt all questions.			
	2.		
	3.	Figures to the right indicate full marks.	
Q.1		Derive the necessary equations for designing skirt bearing plate for supporting	
X		the tall vertical vessel by considering	
	(a)	The tension side, and	07
	(b)	The compression side.	07
Q.2	(a)	How the bolting area and bearing plate width are determined for the foundation	07
		of tall vertical vessel?	07
	(b)	Write short notes on ASME section VIII Division I, II and III OR	07
	(b)	Discuss the stress categories according to ASME code.	07
Q.3	(a)	Derive the stress-curvature relation for rectangular plate	07
	(b)	Determine the deflection of a circular plate of radius <i>a</i> carrying uniformly	07
		distributed load q if its outer edge is having fixed support.	
0.0		OR	
Q.3	(a)		07
	(b)	internal pressure in shells of revolution. Derive the equations for determining the discontinuity stress in the cylindrical	07
	(b)	shell when subjected to internal pressure.	07
Q.4	(a)		07
~ ··	(u)	1. Design pressure	07
		2. Working pressure	
		3. Maximum allowable stress value	
		4. Required and design thickness	
	(b)		07
		the pressure vessel using internal pressure and check against external pressure	
		• Internal pressure = 0.7 MPa	
		• Allowable stress = 120 MPa	
		• Weld joint efficiency = 1	
		• Inside radius of shell and conical section = 2500 mm	
		• Outside diameter of small end of cone = 1270 mm	
		 Cone angle = 30⁰ External pressure = 0.1 MPa 	
		 External pressure = 0.1 MPa Modulus of elasticity = 186161.3 MPa 	
		 Length of shell section = 4 m 	
		 Factors for cylindrical shell A = 0.0005, B = 51.72 	
		• Factors for conical head $A = 0.001$, $B = 75.86$	
		OR	
Q.4	(a)		07
		when subjected to external pressure.	
	(b)	Explain the design procedure of stiffening ring for cylindrical pressure vessel.	07
Q.5	(a)	A cylindrical pressure vessel of 1250 mm inner diameter and 20 mm thickness is	07
		provided with nozzle of 200 mm inner diameter and 15 mm thickness. The	

extension of the nozzle inside the vessel is 15 mm. The corrosion allowance is 2

mm, while the weld joint efficiency for the shell and the nozzle is 0.85. The design pressure is 3 MPa. The yield strength of the material for the shell and the nozzle is 200 MPa. Factor of safety is 1.5. Determine whether or not a reinforcement pad is required for the opening.

(b) Explain different types of pipe joints used in common practice.

OR

- Q.5 (a) A pipe with 50 mm and 75 mm as inner and outer diameters respectively is reinforced by a shrinking a jacket with an outer diameter of 10 mm. The compound pipe is to withstand an internal pressure of 35 MPa. The shrinkage allowance is such that the maximum tangential stress in each pipe has same magnitude. Calculate
 - 1. The shrinkage pressure, and
 - 2. The original dimensions of pipes

Show the distribution of tangential stresses. Assume $E = 207 \text{ kN/mm}^2$

(b) Discuss the various piping codes and standards

07

07