Seat No.:		Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER IV (NEW) – • EXAMINATION – SUMMER 2016	
Su	bject	Code: 2741601 Date:04/05/201	16
		Name: ADVANCED TRANSPORT PHENOMENA	
		0:30 am to 01:00 pm Total Marks:	70
Ins	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a) (b)	Derive the equation of motion for three dimensional flow. Discuss about friction factor for flow in tube for laminar and turbulent flow.	07 07
Q.2	(a) (b)	Derive the equation of continuity for a fluid flowing across the stationary cube. Quantitative comparison of laminar and turbulent velocity distributions. OR	07 07
	(b)	Discuss friction factor for flow in conduits and flow around submerged objects.	07
Q.3	(a) (b)	What pressure gradient is required to cause N-N-diethylaniline to flow in a horizontal smooth circular tube of inside diameter $D=3$ cm at a volumetric rate of $Q=1.6$ liter/sec at 20 ^{0}C ? At this temperature the density of diethyl aniline is 0.935 gm/cm ³ and its viscosity is 1.95 cP. Data: $f=0.0791/Re^{0.25}$ Write in brief about heat transfer coefficient for forced convection through	07
		packed beds.	
Q.3	(a)	Obtain concentration profile equation for diffusion with heterogeneous chemical reaction.	07
	(b)	Discuss in detail about Reynolds anology and Prandtl mixing length.	07
Q.4	(a)	Explain basic laws of scalar and vector algebra. Briefly discuss tensor	07
	(b)	operations. Determine the temperature distribution in an incompressible liquid confined between two coaxial cylinders, the outer one of which is rotating at a steady angular velocity. OR	07
Q.4	(a)	Discuss concentration distribution equation with homogeneous chemical reaction.	07
	(b)	Discuss the concentration profile in tubular reactor.	07
Q.5	(a) (b)	Discuss about mass transfer coefficient in falling film on plane surface. Discuss advantages, limitations, application for Computational fluid dynamics. OR	07 07
Q.5	(a)	Discuss about heat transfer coefficient for condensation of pure vapors on solid	07

(b) Discuss about mass transfer in falling film over plane surface.

07