GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER I (OLD) – • EXAMINATION – SUMMER 2016

	•	t Code: 710402N Date:17/05/20	16
Subject Name: INFORMATION THEORY AND CODING Time:02:30 pm to 05:00 pm Instructions: Total Man			
1115	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Define instantaneous code and derive Krafts inequality for code binary alphabet.	07
	(b)	Briefly discuss on: (1) Binary Symmetric Channel. (2) Source Entropy and Information rate. (3) Hamming Distance	07
Q.2	(a) (b)	Define entropy and derive the conditions for maximum and minimum entropy. A source emits seven messages with probabilities 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 and 1/64 respectively. Find the entropy of the source. Obtain the Compact binary code and find the average length of the codeword. Determine the efficiency and redundancy of the code. OR	07 07
	(b)	Source Symbol A, B, C, D and E has probabilities 0.25, 0.25, 0.20, 0.15 and 0.15 respectively. Construct arithmetic code for message BCAE.	07
Q.3	(a) (b)	State and prove Shannon's Noiseless coding Theorem. A binary symmetric channel has the following noise matrix with source probabilities of $p(x1)=1/3$ and $p(x2)=2/3$ Y1 Y2 X1 Z/3 1/10 9/10	07 07
		Determine $H(X)$, $H(Y)$, $H(X, Y)$, $H(Y/X)$, $H(X/Y)$ AND $I(X,Y)$. OR	
Q.3	(a) (b)	Explain Shannon-fano Code With Example. Derive the equation for average mutual information (I(x; y)) and channel capacity of a discrete memory less channel.	07 07
Q.4	(a)	Draw the diagram of an encoder for systematic cyclic code and explain cyclic	07
	(b)	code generation in detail. For a (6,3) systematic linear block code, the three parity-check digits c4,c5 and c6 are	07
		c4 = d1+d2+d3, $c5 = d1+d2$, $c6 = d1+d3$ (a) Construct the appropriate generator matrix for this code.	
		(b) Construct the code generated by this matrix.	
		(c) Determine the error correcting capabilities of this code.	
		(d) Prepare a suitable decoding table.	
		(e) Decode the following received words: 101100, 000110, 101010	

Q.4	(a)	Describe the procedure for encoding and decoding of linear block code.	07
	(b)	A three-error correcting (23, 12) Golay code is a cyclic code with a generator polynomial.	
		$g(x) = x^{11} + x^9 + x^7 + x^6 + x^5 + x + 1$ Determine the code word for the data vectors 000011110000, 101010101010, and 11000101011110	07
Q.5	(a)	Give differences between public key and private key encryption. Discuss the Knapsack problem.	07
	(b)	Draw Rate ½ Convolution encoder for constraint length of 3. Explain various methods of representing this encoder.	07
		OR	
Q.5	(a)	Explain JPEG standard for image compression.	07
-	(b)	Write short note on Hamming Codes.	07
