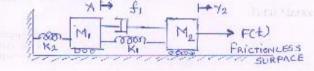
GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER I (OLD) – • EXAMINATION – SUMMER 2016

Date:18/05/2016 Subject Code: 710703N Subject Name: Modern Control Systems Time:02:30 pm to 05:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. Make suitable assumptions wherever necessary. 2. 3. Figures to the right indicate full marks. Discuss the advantages and disadvantages of state space model for a system **Q.1** 07 (a) compared to transfer function model. Hence, define state and state space. (b) Explain eigenvalues and eigenvectors of a matrix. Determine eigenvalues of matrix $A = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 21 04 + 033 Prove that eigenvalues are invariant under a linear transformation **O.2** (a) Obtain the state model in the diagonal form for the transfer function given by 07 $G(s) = (s+2) / (s^3 + 9s^2 + 20s)$. Is this system controllable ?

(b) Obtain the state space model for the mechanical system shown in figure. 07



OR

- (b) Obtain the co-relation between the state space equation and transfer function. Hence, obtain the transfer function for the system given in state model form as $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & -4 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} u \text{ and } y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
- Q.3 (a) Define 'state transition matrix '. Hence derive the solution to the vector equation 07 $\dot{X} = AX + Bu$
 - (b) Check for the controllability and the observability of the system given by

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u$$
$$[y_1] = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

OR

Q.3 (a) Obtain the time response of the system given by

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u \text{ where u is unit step input and } x^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

- (b) Explain Cayley Hamilton Theorem and discuss how it can be used to find the **07** state transition matrix.
- Q.4 (a) What is a state controller? With the help of block diagram explain full order

07

07

state controller.

(b) Explain in brief the concepts and definition of Controllability and Observability. 07

OR

Q.4 (a) Design a state feedback controller gain using pole placement technique for the 07 system given by $[x^2, 1] = [0]$

 $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$

The desired pole location of the closed loop system are s = -3 and s = -5. Use both Ackerman's formula and direct substitution method to determine the controller gain matrix **K**.

- (b) Discuss necessary and sufficient condition for state observation and hence 07 explain the design procedure of a full state observer.
- Q.5 (a) Discuss stability in the sense of Liapunov. Explain asymptotic stability and asymptotic stability in the large with the help of appropriate diagram and relevant equations.
 - (b) Define Positive Definiteness, Positive Semi Definiteness and Indefiniteness of a quadratic function. Hence, check the definiteness of the following function
 - 1. $Q_1 = (3x_1 2x_2)^2$ 2. $Q_2 = 2(x_1 - \frac{1}{2}x_2)^2 + \frac{3}{2}(x_2 - \frac{2}{3}x_3)^2 + \frac{4}{3}x_3^2$

OR

Q.5 (a) Apply Krasovski method to assess stability of the equilibrium point x(0) of the o7 system given below

$$\dot{x}_1 = -x_1$$

 $\dot{x}_2 = x_1 - x_2 - (x_2)^3/3$

(b) Explain the direct method of Liapunov to determine the stability of linear 07 systems. Hence, determine the stability of the system given by

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

A	× ⊨ fi	H+Y2 Detai Marka
and los	M, The	M2 F(t)
K	L DOG KI	FRICTIONLESS SURPACE