Date:16/05/2016

Total Marks: 70

07

07

07

GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER I (OLD) – • EXAMINATION – SUMMER 2016

Subject Code: 710901N

Subject Name: Theory of Elasticity

Time:02:30 pm to 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Derive the Cauchy stress formula.
 - (b) Prove that the principal planes are orthogonal.
- **Q.2** (a) Derive the equations of equilibrium in Cartesian coordinates.
 - (b) For a given state of stress, determine the principal stresses and their directions. 07

$$\sigma_{ij} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}$$

OR

(b) The displacement field for a body is given by $u_x = x^2 + y$, $u_y = 3 + z$ and 07 $u_z = x^2 + 2y$ at a point P(3,1,-2). Determine the principal strains.

Q.3 (a) Derive the equation for cubic dilatation in three dimensional Cartesian 07 coordinate system.

(b) Consider the displacement field $u_x = y^2(10^{-2})$, $u_y = 3yz(10^{-2})$ and 07 $u_z = (4 + 6x^2)(10^{-2})$. What are the rectangular strain components at the point P(1,0,2)?

OR

Q.3	(a)	Discuss the deviatoric state of strain and its invariants.	07
-	(b)	Derive the displacement equations of equilibrium.	07
Q.4	(a)	Explain Maxwell reciprocal theorem.	07
•	(b)	Determine the slope at the end A of the cantilever beam of length L.	07
		I P	

0	R

Q.4		Derive the expression for strain energy of beam due to pure bending. Explain Menabrea's theorem.	07 07
Q.5	(a)	Derive the equation for the allowances in composite tubes. Determine the stresses induced in the rotating disc of uniform thickness.	07

OR

Q.5	(a)	Determine the shape for a disc with uniform stress $\sigma_r = \sigma_{\theta}$.	07
	(b)	What is Airy's stress function? Discuss its importance in plane elasticity.	07
