GUJARAT TECHNOLOGICAL UNIVERSITY ME – SEMESTER III (OLD) – • EXAMINATION – SUMMER 2016

Subject Code: 730403

Subject Name: Optimization Techniques

Time:10:30 am to 01:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) (i) Find the maxima or minima, if any, of the function

$$f(x) = 4x^3 - 18x^2 + 27x - 7.$$
(ii) Find the critical points of the function
(1)

$$f(x, y) = x^3 + y^3 - 63(x + y) + 12xy.$$

- (b) A window is in the form of a rectangle surmounted by a semi-circle. If 07 the perimeter of the window is 100 m, find the dimensions of the window so that maximum light enters through the window.
- Q.2 (a) Define a convex function. How will you check that a function is 07 convex or not? Check whether the function $f(x_1, x_2) = 2x_1^3 6x_2^2$ is convex.
 - **(b)** Minimize $f = -x_1 2x_2 x_3$ subject to

$$2x_1 + x_2 - x_3 \le 2, 2x_1 - x_2 + 5x_3 \le 6, 4x_1 + x_2 + x_3 \le 6, x_i \ge 0, \quad i = 1, 2, 3$$

by Simplex method.

OR

(b) Find the solution of the following LP problem graphically: Maximize $f = 2x_1 + 6x_2$ subject to

$$-x_1 + x_2 \le 1, 2x_1 + x_2 \le 2, x_1 \ge 0, \qquad x_2 \ge 0.$$

Q.3 (a) Use Dichotomous Search Method to find the minimum of $f(\lambda) = \lambda(\lambda - 1.5)$

in the interval (0.00, 1.00) to within 10% of the exact value. Take $\delta = 0.001$.

(b) Use Newton-Raphson Method to minimize the function λ

$$f(\lambda) = \frac{\lambda}{\log \lambda}.$$

OR

Take $\lambda_0 = 2$.

Q.3 (a) Use Golden Section Method with
$$n = 6$$
 to minimize the function

$$f(\lambda) = 0.65 - \frac{0.75}{1 + \lambda^2} - 0.65 \lambda \tan^{-1} \frac{1}{\lambda}$$
07

in the interval [0, 3].

(b) Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ with the starting **07** point $X_1 = [0 \ 0]^T$ using Newton's method.

Date:05/05/2016

Total Marks: 70

03

07

07

07

Q.4	(a)	Explain the method of unrestricted search with fixed step size. What is its demerit? Explain also the exhaustive search method.	07
	(b)	Write the algorithm of Hooke and Jeeves'Method. OR	07
Q.4	(a)	Use Interval Halving Method to minimize the function $f(\lambda) = \lambda^5 - 5\lambda^3 - 20\lambda + 5$	07
	(b)	with $n = 7$ in the interval (0, 5). Write the general form of an optimization problem. Write the classification of optimization problem.	07
Q.5	(a)	Use Cauchy'ssteepest descent method to minimize $f(x_1, x_2) = 6x_1^2 - 6x_1x_2 + 2x_2^2 - x_1 - 2x_2$ from the point $X_1 = \begin{cases} 0 \\ 0 \end{cases}$. Perform only two iterations.	07
	(b)	What are the transformation techniques? How they are useful in optimization? List some transformations to convert a constrained optimization problem into an unconstrained one?	07
Q.5	(a) (b)	Write the algorithm of Univariate method. Write a short note: Penalty function methods.	07 07
