GUJARAT TECHNOLOGICAL UNIVERSITY

ME - SEMESTER III (OLD) - • EXAMINATION - SUMMER 2016

Subject Code: 731504 Subject Name: PLATES AND SHELLS Time:10:30 am to 01:00 pm

Total Marks: 70

Date:05/05/2016

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Use notations for plates from following expressions unless specified otherwise $q_{xy} = \sum_{1}^{\infty} \sum_{1}^{\infty} A_{mn} \sin(\frac{m\pi}{2}x) \sin(\frac{n\pi}{2}y)$

$$w_{xy} = \sum_{1}^{\infty} \sum_{1}^{\infty} B_{mn} \sin(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y)$$

- 4. Notations for membrane forces in cylindrical shells ... N_x Along generatrix, N_ϕ Along directrix and $N_{x\phi}$ – Shear in middle surface
- 5. Figures to the right indicate full marks.
- (a) What do you mean by Kirchoff's equivalent shear? Derive an expression for a 07 0.1 plate in x-y plane (middle plane) for the equivalent shear along a free edge y=0 in terms of deflection and its derivatives 07
 - (b) Derive D.E. of equilibrium for a cylindrical shell
- (a) Find equation to deflected surface of a clamped circular plate of uniform 07 **O.2** thickness and radius 'a', carrying an axisymmetric load $q_r = q \left(\frac{r}{r}\right)^2$
 - (b) Using finite difference method find necessary equations to be satisfied by 07 deflections of a clamped square plate (a x a) carrying u.d.l. of intensity 'q' per unit area on the entire area of plate. Consider quarter plate only. Take interval $\frac{a}{4}$ in each direction. Take one of the corners of plate as origin for grid system

OR

- (b) A simply supported square plate of side 'a', carries a point load 'P' acting 07 vertically downward at $(\frac{a}{4}, \frac{a}{2})$. The plate also carries another point load 'P' acting vertically upward at $(\frac{3a}{4}, \frac{a}{2})$. Use appropriate trial function and find deflection at centre of plate using principle of minimum potential energy
- (a) Find A_{mn} for a simply supported rectangular plate (a x b) carrying load given by 0.3 07

$$q_{xy} = q \frac{xy}{ab}$$
 defined over $0 \le x \le \frac{a}{3}$, $0 \le y \le \frac{b}{4}$

(b) Find B_{mn} for plate in Q.3(a) above and hence find deflection at centre of plate 07 considering first 4 terms in the series.

OR

- (a) Derive D.E. of equilibrium for a transversely loaded plate of uniform thickness Q.3 07 subject to bending
 - (b) Classify shells on the basis of geometry

07

- (a) Derive necessary equations to find the equation to the deflected surface of a 07 **Q.4** rectangular plate (a x b) subject to u.d.l. of intensity 'q' on entire area using Levy's method. Edges x=0, x=a are simply supported and other two edges are fixed
 - (b) Find the expression for deflection at centre of plate given in Q.4(a) above

OR

07

A cylindrical shell of length 'l' carrying its own weight is supported on **Q.4** (a) 07 diaphragms that are very rigid in their own planes and very fragile in a direction normal to the plane. Sketch the distribution of membrane forces N_x and $N_{x\phi}$ along any arbitrary generator parallel to x for following positions of diaphragms

- At x=0 and x=li. ii. At x=0 and $x = \frac{3l}{4}$ iii. At $x = \frac{l}{4}$ and $x = \frac{5l}{6}$ iii.
- (b) Derive differential equation of equilibrium in 'r' direction for a shell of 07 revolution subject to arbitrary loading
- **Q.5** A conical tank of maximum radius 'a' and height 1.5 times 'a' is filled with 07 **(a)** water. Find the variation of meridional force N₀ using membrane theory
 - (b) A semicircular barrel roof carries live load 'q' per unit plan area. Using 07 membrane theory find variation of forces N_x , N_{ϕ} and $N_{x\phi}$ if the cylindrical shell is fixed at x=0 and free at x=l

OR

- A hemispherical dome of radius 'a' carries a ring load 'q' per unit length Q.5 (a) 07 transferred by an edge beam provided at the edge of an opening at the crown of radius 'a/6'. Find the forces developed in the dome using membrane theory if the self-weight of the dome is $\left(\frac{q}{5}\right)$ per unit area of middle surface. The dome rests on level ground. Ignore bending effects
 - Describe steps you will follow to design a tilted inverted umbrella type 07 **(b)** hyperbolic shell supported on central column
